-
1
M1750 Ada
Technical Summary

For mission-critical applications

WWW.Xgc.com

M 1750 Ada Technical
Summary

For mission-critical applications

Order Number: M1750-ADA-TS-040402

XGC Software

London
UK
<WWW. XgC. conp

M 1750 Ada Technical Summary: For mission-critical applications
by Chris Nettleton and Ellis Thomas

Published April 2, 2004
© 1998, 1999, 2000, 2001, 2002, 2003, 2004 X GC Software

Abstract
Thisreport presentstechnical and commercial information about Version 1.7 of the M 1750 Adacompilation system.

Acknowledgments

XGC Software acknowledges contributions from the following organizations:

« The European Space Agency, contracts 11935 and 11374

¢ TheUK Ministry of Defence, HOLD Il contract

¢« TRW Aerospace, HOLD Il contract

« New York University and ACT, Inc., for the GNAT front end

¢ The Free Software Foundation, for the base level C compiler, assembler and linker.

Thismanual iswrittenin XML that conformsto DocBook Version 4.3. See The DocBook web site [http://www.docbook.org/] for moreinformation.

Notice

The information in this document is subject to change without notice and should not be construed as a commitment by XGC Software. XGC
Software assumes no responsibility for any errors that may appear in this document.

http://www.docbook.org/

Contents

Preface xi

Chapter 1 Introduction 1

1.1 Peformance 2

1.2 Resdtrictions 2

1.3 User Documentation 2
14 Media 2

15 Waranty 3

Chapter 2 Host and Target 5

2.1 Cross-Development System 5

2.2 Host Configurations 6

2.3 Host Operating System 6

2.4 Target Configurations 6

25 Target Operating System 7

2.6 Programming Support Environment 7
2.7 Host-Target Communication 7

M1750 Ada Technical Summary

Chapter 3

31
3.2
3.3

34
3.5
3.6
3.7
38
39

3.10

Language-Related Issues 9

Overview 9
Section 2: Lexical Elements 10
Section 3: Declarations and Types 11
3.3.1 Uninitialized Variables 11
3.3.2 Enumeration Types 11
3.3.3 Integer Types 11
3.34 Floating Point Types 12
3.3.5 Fixed Point Types 13
Section 4: Names and Expressions 13
Section 5: Statements 14
Section 6: Subprograms 14
Section 7: Packages 14
Section 8: Visibility Rules 14
Section 9: Tasks and Synchronization 14
39.1 typeDuration 15
3.9.2 Shared Variables 15
Section 10: Program Structure and Compilation

Issues 16

311
3.12
3.13

3.14
3.15
3.16
3.17
3.18
3.19
3.20
321
3.22
3.23
3.24
3.25

Chapter 4

4.1
4.2

Z"

Section 11: Exceptions 16
Section 12: Generic Units 17
Section 13: Representation Issues 17
3.13.1 Definitions from the predefined package
System 18
3.13.2 ThetypeAddress 18
Input-Output 19
Annex A: Predefined Language Environment 19
Annex B: Interface to Other Languages 21
Annex C: Systems Programming 21
Annex D: Real-Time Systems 22
Annex E: Distributed Systems 23
Annex F: Information Systems 23
Annex G: Numerics 23
Annex H: Safety and Security 23
Annex J: Obsolescent Features 23
Annex K: Language-Defined Attributes 24
Annex L: Language-Defined Pragmas 24

User Interface and Debugging Facilities 25

Compiler Invocation 25
Compilation 26
421 Format and Content of User Listings 26

M1750 Ada Technical Summary

4.3 Errorsand Warnings 28

4.4
4.5

Other Software Supplied 28
Debugging Facilities 30

Chapter 5 Performance and Capacity 31

51
52

Host Performance and Capacity 31

Target Code Performance 32

5.21 Optimization and Code Quality 33
5.2.2 Congtraint Checks 34

5.2.3 Spacefor Unused Variables 34
5.2.4 Space for Unused Subprograms 34
5.25 Evauation of Static Expressions 35
5.2.6 Elimination of Unreachable Code 35
5.2.7 Common Sub-expressions 35

5.28 Loop Invariants 35

529 Bound Checks 35

5210 Thepragmalnline 36

5.211 Procedure Caling Overhead 36
5.2.12 TheRendezvous 36

5.2.13 Space Requirements 36

Chapter 6 Cross-Compiler and Run-Time Interfacing 37

6.1

6.2
6.3

6.4
6.5
6.6

6.7
6.8
6.9

Cross-Compiler Issues 37

6.1.1 Background 37

Compiler Phase and Pass Structure 38

Compiler Module Structure 39

6.3.1 Intermediate Program Representations 39
6.3.2 Fina Program Representation 39

6.3.3 Compiler Interfacesto Other Tools 39
Compiler Construction Tools 40

Installation 40

Run-Time System Issues 40

6.6.1 TheStack 41

6.6.2 Subprogram Call and Parameter Handling 41
6.6.3 DataRepresentation 42

6.6.4 Implementation of AdaTasking 42
Exception Handling System 43

I/O Interfaces 43

Documentation 44

Chapter 7 Re-targeting and Re-hosting 45

7.1

<

Retargeting 45

M1750 Ada Technical Summary

7.2 Rehosting 46
7.21 Availability of Source Code 46
7.2.2 Source Language 46
7.2.3 System Dependencies 46

Chapter 8 Contractual Matters 47

8.1 TheCompiler License 47
8.2 TheRun-TimeLicense 48
8.3 Support 48

Chapter 9 Validation 49

Appendix A Examples of Generated Code 51
A.1 The Sieve of Eratosthenes 51
A.2 Ackermann's Function 54

Appendix B Restrictions and Profiles 57

Appendix C The Predefined Library 63

=

<l

Tables

31
3.2
3.3
3.4
5.1
5.2
9.1
B.1
B.2
B.3
C1

Attributes of the Predefined Integer Types 12
Basic Attributes of Floating Point Types 13
Attributes of the Predefined Type Duration 15
Named Numbers from package System 18
Benchmark Results 32

Task-Related Metrics 33

The Validation Test Classes 50

Supported Profiles 58

Profiles and Restrictions 59

Profiles and Numerical Restrictions 60
Predefined Library Units 64

Examples

A.1 Source Codefor Sieve 52

A.2 Generated Codefor Sieve 53

A.3 Ada Source Code for Ackermann's Function 55
A.4 Generated Code for Ackermann's Function 56

x

Preface

Thissummary providestechnical information about the M1750 Adacross
compiler. It isintended for anyone evaluating cross compilers for
development environments using workstations running the UNIX
operating system, and microprocessor targets. The reader is expected to
be familiar with the Ada 95 programming language.

Theinformation in this summary is organized according to the Ada-Europe
Guidelinesfor Ada compiler specification and selection. These guidelines
pose questions about an Ada implementation that are designed to assist
vendors and users of Ada compilers. Although written for Ada 83, these
guidelines continue to be relevant for Ada 95, and for this summary, we
include answersto any Ada 95-specific questions.

Questions from the guidelines are not restated; topics are discussed in a
manner that makes it unnecessary to refer to the original questions.
Supplementary information is provided as appropriate. An appendix shows
listing from two small compilationsto help answer many of the questions
related to compilation listings and error messages. The presentation is
terse to provide as much information as possible in a compact form.

The Ada-Europe Guidelinesfor Ada compiler specification and selection
were written in 1982 by J.C.D. Nissen, B.A. Wichmann, and other

Preface

X.‘

members of Ada-Europe, with partial support from the Commission of
the European Communities. They are availablefrom the National Physical
Laboratory asNPL report DITC 10/82, ISSN 0262-5369. They were also
reprinted in Ada Letters, Val. 111, No. 1 (July, August 1983), pp. 37-50.
(Ada Lettersispublished every two months by SIGAda, the ACM Special
Interest Group on Ada.)

Version 1.7. Version 1.7 adds exception handling but does not support
exception propagation (down the dynamic stack). Handlers can only
handle exceptions raised locally. Version 1.7 also adds a static subset of
programming by extension. Dispatching is not supported and the attribute
' d ass isprohibited.

Version 1.6. Version 1.6 offers broader functionality with a smaller
run-time system. The default profileis extended with allocators, catenation
operators and the Ada 83 rendezvous. Functionsthat return unconstrained
types are also permitted.

Version1.5. Version 1.5includesfurther support for real-time systems.
Several Adachild packagesthat were previously absent are now available
in the default profile. We have added the pragma Profile, which offers a
choice of fivemission-critical profiles. Notethat M1750 Adatill prohibits
non-static tasks, the rendezvous, allocators and exception handlers, and
other Adafeatures that depend on these. Version 1.5 also supports
expanded memory.

Version 1.2. The main change since Version 1.1 is the addition of a
limited form of Adatasking that supports the Ravenscar Profile. The
profileincludes tasks and protected objects declared in library packages,
and alimited number of features from Annexes C and D.

Version 1.1. Version 1.1 offers all the features of the safety-critical
HOLD Il compiler devel oped for Lucas Aerospace but targeted to the
M1750 rather than the Motorola M C68020.

Chapter 1 I ntrOdUCtI On

M1750 Adaisacross-devel opment system providing aproduction-quality
implementation of arestricted Ada 95 language
(ANSI/ISO/IEC-8652:1995). Significant features of M1750 Ada are as
follows:

* Minimum program size approximately 1500 bytes

e Accurate delays with 200 microseconds® delay latency over whole
range

» Low overhead 5K byte tasking system with 200 microseconds’ task
switch

» Full support for interrupts attached to protected subprograms
e Comprehensive printed and on-line user manuals
» Available off the shelf as afully supported commercia product

» Evaluation copies available for down-load

Generic MIL-STD-1750 at 10 MHz

Chapter 1. Introduction

e Compatible with GCC-1750, the C/C++ compilation system for the
MIL-STD-1750A

* Built-inrestrictionsfor mission-critical applications (see Appendix B,
Restrictions and Profiles[57])

1.1. Performance

M1750 Adaincludes ahigh-performance run-time system that optionally
supports Ada tasking, interrupt handling and real-time scheduling. For
more information on the real-time performance, see Chapter 5,
Performance and Capacity [31].

1.2. Restrictions

Several sets of restrictions are supported. These are known as profiles,
and may be employed to ensure an appropriate level of softwareintegrity.
For more information on restrictions and profiles see Appendix B,
Restrictions and Profiles [57].

1.3. User Documentation

The documentation provided with M 1750 Adaincludes the following:

» Getting Started with M1750 Ada, which describes how to install
M 1750 Ada, and how to write and run a small application program.

» M1750 Ada Language Reference Manual Supplement, which includes
implementation-specific information required by the Ada standard.

e M1750 Ada User's Guide (three volumes), which describes how to
use the M1750 Adatool set.

All on-line documentation is shipped in source format (XML), HTML
format, and Adobe® PDF format.

1.4. Media

"~

M1750 Adais shipped on CD-ROM, and includes both on-line and printed
user manuals.

1.5. Warranty

1.5 Warranty

M1750 Adaincludes six months support to help usersinstall and become
familiar with the compiler and using the Adalanguage on the M1750.

.

Chapter 2 HOS[and Tﬂl’g@t

This chapter gives details of the following:
» the host configurations on which the compiler can run
» thetarget configurations on which compiled programs can run

» themeansfor transferring acompiled program from the host computer
to the target computer.

2.1. Cross-Development System

A cross development is used where programs written on one machine are
compiled to run on another. The machine used for software devel opment
is the host and the machine on which the programs run is the target.

Typicaly, thisform of development i s associ ated with embedded software
for real-time applications. This approach enables the target computer to

be optimized for the embedded application and the devel opment tools to
exploit the effectiveness of the host computer.

Chapter 2. Host and Target

2.2. Host Configurations

The host computer should be a UNIX workstation or personal computer
that meets the following minimum requirements:

* 50MHz, 32-bit CPU

e 1G byte hard disk drive

e 24M bytesRAM

» High-resolution monitor with X Windows and window manager
» Network interface supporting TCP/IP

e Serid interface for host-target link

By adding extraterminals, a system like this can support several users at
the sametime.

2.3. Host Operating System

The standard host operating systems are as follows:
e Solaris® 2.6 or above, running on a Sun SPARC® compuiter.

* RedHat® Linux Version 7.3 or above, running on an IBM PC or
compatible computer.

See Section 7.2, “Rehosting” [46] for information about additional host
computers.

2.4. Target Configurations

7|

For M1750 Ada Version 1.7, the standard target is ERA evaluation Kit,
as devel oped for the European Space Agency.

Other targets that conform to the MIL-STD-1750A/B specification may
also be used.

2.5.Target Operating System

2.5. Target Operating System

No target operating system is required since M1750 Adaincludes all the
necessary run-time system functions to support application programs
running on a bare target board.

2.6. Programming Support Environment

M1750 Adaincludes atool that determines which program units need
compiling or recompiling, then runs the compiler and linker as necessary
to build a consistent program.

In addition, the programming support environment consists of the standard
GNU/UNIX software development tools, which provide configuration
management, automated program configuration and construction,
automated regression testing, and much more.

We recommend the Bash shell since it offers conformance to the POSI X
standard, and supports command line working. Bash is not included with
M1750 Ada, but is available from any GNU site.

2.7. Host-Target Communication

Two methods are available for transferring datafrom the host to the target.
At the host the following facilities are provided:

* A standard RS-232-C port connected to UNIX terminal interface
» A TCP/IP network connection

Either of these communication standards can be used provided that a
compatible capability is available on the target.

”|

Chapter 3 Language' Rel ated I SSUES

The Ada 95 Reference Manual, ANSI/I SO/IEC-8652:1995, explicitly
allows variations between Ada processors in a number of aspects. This
chapter describesthe language supported by M 1750 Adaand is organized
according to the appropriate chapters and annexes of the Ada Manual.

3.1. Overview

M 1750 Ada supports several restricted Ada 95 profiles that prohibit the
use of unsafe language features, and which are compatible with the
requirements for high-integrity software applications.

» The XGC profile (the largest profile and the default)

* Ravenscar (which includes alimited form of tasking)

» Restricted run-time system (for ARINC 653 applications)
* No run-time system (for safety-critical applications)

Language features that are alwaysrestricted are not supported at al. This
means that the compiler and run-time system can be optimized for the

Chapter 3. Language-Related Issues

safe subsets and unlike unrestricted compilers, need not be hindered by
the need to support complex and inefficient features that are never used.

The gainin efficiency is evident in the performance figures, which are
an order of magnitude smaller and faster than competing compilation
systems that support the full language.

Thefollowing list gives language features that are prohibited. The
references to sections in thislist apply to the Ada 95 Reference Manual.
Further details appear in the respective section below:

Prohibited Feature Ada RM Section
Partitions of Distributed Systems Annex E

Exception propagation Sections 3.1 and 11
Finalization in packages Section 7.6

Some predefined packages Annex A

Streams Section 13
Class-wide operations with tagged types Section 3.9

3.2. Section 2: Lexical Elements

°|

Adasource programs are represented in standard text files, using Latin-1
coding. Latin-1isASCII with additional characters used for representing
foreign languages. The lower half (character codes 16#004# ... 16#7F#) is
identical to standard ASCII coding, but the upper half isused to represent
the additional characters. Any of these extended charactersisalowed in
character or string literals. Moreover, extended characters that represent
letters can be used in identifiers.

Onthetarget M 1750 Ada supportsthe character sets defined by the Ada 95
Reference Manual. These are the predefined types Char act er and
Wde_Character.

The predefined type Char act er isacharacter type whose values
correspond to the 256 code positions of Row 00 (also known as Latin-1)
of the ISO 10646 Basic Multi-lingual Plane (BMP).

The predefined type W de_Char act er isacharacter type whose values
correspond to the 65536 code positions of the SO 10646 Basic
Multi-lingual Plane (BMP).

The maximum number of charactersin asourcelineis 255.

3.3. Section 3: Declarations and Types

The maximum length of alexical element is 255 characters.

3.3. Section 3: Declarations and Types

Declarations and types are supported as specified in the Ada standard
except for tagged types (See RM Section 3.9).

3.3.1. Uninitialized Variables

When the compile time option - Wini ni ti al i zed is used, the compiler
flags variables that may be uninitialized.

3.3.2. Enumeration Types

Enumeration types are supported as defined in the Ada 95 Reference
Manual. Additional code and read-only data are generated to support the
attributes 'Image, 'Pos and 'Val.

The size of enumeration objectsisthe minimum required to accommodate
all thevalues, and including any representations given in arepresentation
clause. The compiler selects asize of 16 or 32 bits as appropriate.

Enumeration types may be packed to reduce wasted space in arrays of
enumeration objects.

3.3.3. Integer Types

M1750 Ada provides five predefined Integer types:

thetype Short _Short _I nt eger
e thetypeShort | nteger

» thetypel nteger

» thetypelong_ I nteger

» thetypelLong_Long_I nt eger

Table 3.1, “Attributes of the Predefined Integer Types’ [12] givesthe
values of the attributes Size, First and Last for these types.

Chapter 3. Language-Related Issues

9|

Table 3.1. Attributes of the Predefined Integer Types

Type Size First Last
Short_Short_Integer 16 2 21
Short_Integer 16 21 2151
Integer 16 2B 211
Long_Integer 32 2% %L1
Long_Long_Integer 64 2% 2%

User-Defined Types. For a user-defined integer type, the compiler
automatically selects the smallest compatible predefined integer type as

the base type. For example, given the following type definition:

type M/_Integer is range -10 .. +10;

the compiler uses Short _Short | nt eger asthe basetype, and

M/_I nteger' Si ze is 16 hits.

Modular Types. M1750 Ada supports modular types up to 64 bitsin
size. Like the integer types, these are represented in 16, 32 or 64 bits as
appropriate. The value of Max_Nonbi nary_Mbdul us is 32767. The

following declarations are legal:

type Unsigned_8 is nod 256;
type Unsigned_16 is nod 65536;
type Unsigned_32 is nmod 2**32;
type Unsigned 64 is nod 2**64;
type Index is mod 32767;

The standard Ada 95 operators for modular types are supported.

3.3.4. Floating Point Types

M1750 Ada provides four predefined floating-point types:

» thetype Short Fl oat

» thetypeFl oat

3.3.5. Fixed Point Types

» thetypelong_Fl oat
» thetypelong Long_Fl oat

The types Short _Fl oat and Fl oat are represented by the 32-bit single
precision 1750 format; thetypesLong_Fl oat andLong_Long Fl oat are
represented by the 48-bit 1750 format.

Table 3.2, “Basic Attributes of Floating Point Types’ [13] givesthe values
of the attributes for the predefined floating-point types.

Table 3.2. Basic Attributes of Floating Point Types

Attribute Short Float Float LongFloat LongLong
Float

Size 32 32 48 48

Digits

Machine_Radix 2 2 2

Machine Mantissa 23 23 39 39

Machine_Emax 127 127 127 127

Machine_Emin -128 -128 -128 -128

Machine_Rounds False False False False

Machine_Overflows False False False False

3.3.5. Fixed Point Types

M1750 Ada supports fixed-point types up to 64 bitsin size using 16, 32
or 64 bits as appropriate. The value of 'Small may be either a power of
two, or an arbitrary value given in arepresentation clause.

3.4. Section 4: Names and Expressions

Names and expressions are fully supported in the default profile.

Static expressions of the type uni ver sal _i nt eger or uni versal _real
have no limit on the implemented range or precision. Evaluation of such
expressionsis carried out by ageneral universal arithmetic package.

Non-static expressions of type uni ver sal _i nt eger are evaluated at run
time using the smallest predefined integer type with sufficient range.

Chapter 3. Language-Related Issues

If run-time floating point support is available, non-static expressions of
type uni versal _real areevaluated at run time using 64-bit
double-precision floating point.

3.5. Section 5;: Satements

Some task-related statements are prohibited. All other statements are
supported as described in the Ada 95 Reference Manual.

The prohibited statements are:
» terminate alternative for selective wait
o abort

* requeue

3.6. Section 6: Subprograms

Subprograms are fully supported.

3.7. Section 7: Packages

Except for finalization, packages are fully supported.

3.8. Section 8: Visihility Rules

Visibility rules are fully supported.

3.9. Section 9: Tasks and Synchronization

=

Tasks, protected types and task-related statements are permitted subject
to any user restrictions.

» Task declarations are only permitted at the library level. Tasks may
not be dynamically allocated. Tasks may not terminate.

» Protected objects are only permitted at the library level. Protected
objects may not be dynamically allocated. The maximum number of

3.9.1. type Duration

entriesfor aprotected object isone. The entry barrier must beasimple
Boolean variable, and a maximum of one task may wait on the entry.

» The package Ada.Rea_Timeis provided, and the type
Ada.Real_Time.Time may be used in adelay until statement.

» The package Ada.Synchronous Task_Control is provided and offers
an alternative and possibly more efficient way for tasksto
communicate.

e TheAda83 rendezvous is supported except for the terminate
aternative.

Except for the restrictions on the number of tasksin an entry queue and
the nested rendezvous (which are checked at run time), the compiler
rejects any program that does not conform to the default or given Profile.

3.9.1. type Duration

The predefined type Duration is 32-bit fixed-point type. The value of the
least significant bit is one microsecond. Table 3.3, “Attributes of the
Predefined Type Duration” [15] gives the attributes of this type.

Table 3.3. Attributes of the Predefined Type Duration

Attribute Value Comment

Delta 1.0E-6 One microsecond
Small 1.0E-6 One microsecond
First -2147.483648 Approx. -35 minutes
Last 2147.483647 Approx. 35 minutes

Thetypes Timeand Time_Span from predefined package Ada.Real_Time
have the same representation as type Duration. However the type Time
is declared as a modular type and comparisons of two times correctly
account for the 71-minute cycle.

3.9.2. Shared Variables

M1750 Adasupportsthe pragmaVolatile, which guaranteesthat avariable
isfetched from memory each timeitisreferenced, and is stored in memory
on each assignment.

Chapter 3. Language-Related Issues

M1750 Ada also supports the pragmas Atomic, Atomic_Components,
and Volatile_Components, as specified in Section C.6 of the Ada 95
Reference Manual.

3.10. Section 10: Program Structure and Compilation Issues

An M1750 Adaprogram may use any mixture of programming languages
supported by the compiler, assembler or the linker. One procedure must
become the main program, but this need not be written in Ada 95.

If the main program is written in Adathen it must be a parameter-less
library procedure. If the main program iswritten in C then the arguments
to function mai n shall be null.

The main program is called by arun-time system module (art 0. S) that
initializes the stack and variable data area, and which contains code to
handle traps and interrupts. Codein art 0. S can also copy program
sections from the boot PROM into RAM.

For the M 1750 Microprocessor, the entire program consists of four items:
e The startup module, ar t 0. S, which contains the entry point

» Thefunction main, which calls any Ada elaboration routines then
callsthe Ada main procedure

» TheAdaprogram comprising the Adamain procedure and any library
packagesin the link closure of the main program

» Library routines as required to support the generated code (64-bit
shifts for example)

TheANSI Clibrarieslibc and libm may al so be used viaimport pragmas.

3.11. Section 11: Exceptions

2|

Exceptions may be declared and raised as described in the Ada 95
standard. However exception handlers can only handle exceptions raised
locally. The propagation of exceptionsis not supported.

The predefined exceptions Program_Error, Numeric_Error and
Constraint_Error are raised under the conditions given in the Ada 95
Standard.

3.12. Section 12: Generic Units

The predefined exception Storage Error israised by an explicit raise
statement, or when entering a subprogram, or when allocating the stack
space for adata object or task declaration. The additional code for these
checksis generated by default.

3.12. Section 12: Generic Units

Generic Units are supported as defined in the Ada 95 Reference Manual.

3.13. Section 13: Representation I ssues

M1750 Ada supports al of the implementati on-dependent features of
Ada 95 Reference Manual Section 13 that have a useful meaning in an
embedded system.

In particular:

e The pragma Pack is supported.

Length clauses are supported, including the following:

» Size specification for types

« Small specification for fixed point types, using arbitrary values
« Storage Size specification for tasks

» Enumeration representation clauses are supported.

» Record representation clauses are supported.

» Alignment clauses are supported (up to the maximum data object
size).

* Address clauses are supported for constants and variables.
e The pragma Interface is supported.

* Unchecked programming is supported.

» The predefined package Machine_Code is supported.

The following are not supported:

* interrupt entries for tasks

Chapter 3. Language-Related Issues

2|

e address clauses for subprograms, packages or tasks

» the predefined packages Ada.Unchecked Deallocation and
Unchecked Deallocation

» the predefined package System.Storage Pools

 the predefined package Ada.Streams

3.13.1. Definitions from the predefined package System

Table 3.4, “Named Numbers from package System” [18] specifiesvalues
from the predefined package System.

Table 3.4. Named Number s from package System

Named Number Value

Min_Int 2%

Max_Int 22.1
Max_Binary_Modulus 264
Max_Nonbinary_Modulus 32767
Max_Base Digits 9

Max_Digits 9

Max_Mantissa 63

Fine Delta 2.0%

Tick 1.0 Microseconds

3.13.2. Thetype Address

The predefined type Addressis 16 bitsin size, and the unit of storage
addressed is an 16-bit word. The value of the null addressis zero. The
type Address is declared in the visible part of package System, so that
address expressions may contain numeric literals. M1750 Ada also
declares the type Code_Address which is always 32 bitsin size. Thisis
used for the address of instructions.

3.14. Input-Output

3.14. Input-Output

The packages Ada. Text _| O, Ada. Sequential | OandAda.Direct |0
require support from the system call interface. When running on the target
simulator, the system call interface is supported using the host operating
system, and, for example, acall to open afilewill open ahost file. When
the application is running on the target computer, a system call handler
may be supplied that supports the calls with an 10 system. An example
of such ahandler isincluded in the run-time system.

The package Ada. St orage_| Ois supported as described in the Ada 95
Reference Manual .

3.15. Annex A: Predefined Language Environment
The following predefined library units are provided.
» packageAda
e AdaAsynchronous Task Control
+ AdaCaendar
* AdacCharacters
» Ada.Characters.Handling
* AdacCharacters.Latin 1
e AdaCharacters.Wide _Latin 1
+ AdaDecimal
» AdaDirect 10
e AdaDynamic_Priorities
e Ada.Exceptions
* AdaExceptions.Handlers
* Adalnteger_Text 10

e Ada.lnterrupts

Chapter 3. Language-Related Issues

¥

Ada.Interrupts.Names
Ada.lInterrupts.Unprotected Handlers
AdalO_Exceptions

Adalong Integer Text 10

Adalong Long Integer Text IO

Ada.Numerics (not al child packages are supported)
AdaPeriodic_Tasks

AdaRed_Time

AdaSequential_10

Ada.Short_Integer Text |10

Ada.Storage |10

Ada.Strings (not all child packages are supported)
Ada.Synchronous_Task_Control
AdaTask_Deadlines

Ada.Task_ldentification

AdaText IO

AdaText_|O.Enumeration_|O
AdaText_10.Fixed 10

AdaText_IO.Float_IO

AdaText_10.Integer_10

Ada.Text_IO.Modular 10O

package |O_Exceptions

package Interfaces (not all child packages are supported)
package Machine_Code

package System

3.16. Annex B: Interface to Other Languages

e package System.Address to_Access Conversions
» package System.Machine_Code

» package System.Storage Elements

function Unchecked Conversion

3.16. Annex B: Interface to Other Languages

Annex B is partially supported. In particular, the predefined package
Interfaces is supported.

The following list gives language features that are not available;

Feature Reason for restriction
Interfaces.COBOL Not Applicable
Interfaces.FORTRAN Not Applicable

3.17. Annex C: Systems Programming
Annex C is supported as follows.

C1. Access to Machine Operations
Section Cl isfully supported.

C2. Required Representation Support
Section C2 isfully supported.

C3. Interrupt Support
Interrupts are fully supported. In particular, the package
Ada. I nterrupts. Names is customized for the target computer.

C4. Preelaboration Requirements
Section C4 is fully supported.

C5. Pragma Discard_Names
Section C5 isfully supported.

C6. Shared Variable Control
Section C6 is fully supported.

Chapter 3. Language-Related Issues

C7. Task Identification and Attributes

Section C7 is not fully supported because of the restrictions on
tasking.

3.18. Annex D: Real-Time Systems

N|

Annex D is mostly supported and meets the requirements of the several
profiles.

However, the restrictions defined here and in Annex H are supported, and
used as defaults, as described in Appendix B, Restrictions and
Profiles [57].

D1. Task Priorities

D2.

D3.

DA4.

D5.

Dé.

Section D1 isfully supported with subtype Priority having arange
from 0 .. 127, and subtype Interrupt_Priority having arange from
128 .. 255.

Priority Scheduling
Section D2 isfully supported with the task dispatching policy
FIFO_Within_Priorities.

Priority Ceiling Locking
Section D3 isfully supported with Ceiling_L ocking.

Entry Queuing Policies
For protected types, section D4 is restricted so that the maximum
gueue length is one.

For tasks, the policies FIFO_Queuing and Priority_Queuing are
supported.

Dynamic Priorities
The features of Section D5 are supported by default and may be
prohibited by the use of appropriate restrictions or profiles.

Preemptive Abort
The features of Section D6 are prohibited.

D7. Tasking Restrictions

D8.

Section D7 isfully supported, and includes new restrictions.

Monotonic Time
Section D8 isfully supported.

3.19. Annex E: Distributed Systems

D9. Delay Accuracy
Section D9 isfully supported.

D10. Synchronous Task Control
Section D10 is fully supported.

D11. Asynchronous Task Control
The features of Section D11 are supported by default and may be
prohibited by the use of appropriate restrictions or profiles.

D12. Other Optimizations
The requirements of Section 12 are met.

3.19. Annex E: Distributed Systems

Only asingle partition is available.

3.20. Annex F: Information Systems

Annex F is not supported.

3.21. Annex G: Numerics

Annex G (complex numeric types) is not supported.

3.22. Annex H: Safety and Security

The restrictions defined here and in Annex D are supported, and used as
defaults, as described in Appendix B, Restrictions and Profiles [57].

The Ravenscar profile requires several new restrictions, which are also
supported.

3.23. Annex J; Obsolescent Features

ThisAnnex isamost completely supported. The only missing language
featureisthe predefined package Unchecked Deall ocation, which cannot
be supported because the run-time system has no means of freeing
allocated memory.

Chapter 3. Language-Related Issues

3.24. Annex K: Language-Defined Attributes

Annex K is partially supported. See discussion in other sections.

3.25. Annex L: Language-Defined Pragmas

The language-defined pragmasin Annex L are fully supported.

=]

Chapter 4 User Interface and
Debugging Facilities

This chapter summarizes how to use the cross compiler. The management
of compilation, cross-development and debugging are described briefly.

4.1. Compiler Invocation

M1750 Adauses the UNIX shell command line interface. The compiler,
the tools and the libraries are systematically named, and installed in a
formal directory structure. This permits different versions of M1750 Ada
to beinstalled and used at the same time, without confusion over which
files belong to which version. For the compiler, the convention is this.
Thenative compileriscaledgcc, andislocated inthedirectory / usr/ bi n,
orin/usr/local/bin. Cross compilers have a different name, and are
installed under / opt / ml750- ada- 1. 7/, for example, with the executable
imagesin the directory / opt / niL750- ada- 1. 7/ bi n/ .

The main program of the M1750 Adacompileriscalled ml750- cof f - gcc
and islocated in the directory / opt / ml750- ada- 1. 7/ bi n/ . Depending
on which source files and command line options are given, the main
program calls the Ada compiler, C compiler, assembler, or linker.

Chapter 4. User Interface and Debugging Facilities

The other executable images are named in the same way. For example,
the native assembler is called as; the cross assembler is called
mL750- cof f - as.

4.2. Compilation

>

For Ada 83 and Ada 95 the predefined program library islocated in a
standard place, which is target dependent. The location is
[opt/ mL750- ada- 1. 7/1i b/ gcc-11ib/ ml750-coff/2.8. 1/ adalib/.

Adasource files are ways compiled in the context of a program library.
While M 1750 Ada does not have a closed library as some other Ada
compilersdo, it does generate and uselibrary fileinformation. By default
thisgoesinthe current directory. Library filesusethe. al i (Adalibrary)
suffix. Also M1750 Adarequires each Ada compilation unit to beina
separate file with the file name the same as the unit name. There must be
afileextension whichis. ads for a package or subprogram specification
and . adb for abody.

Where a source file contains more than one compilation unit, then the
program ml750- cof f - gnat chop may be used to divide the file. This
program writesthe output filesin the current directory, or (more usefully)
into a named directory.

For example:

bash$ ml750- cof f - gnat chop big-file.ada src

4.2.1. Format and Content of User Listings

The compiler accepts several command line optionsto control the format
of listings. By default, no listing is generated at all.

-gnatl
Output full source listing with embedded error messages.

-gnatv
Verbose mode. Full error output with source lines to stdout.

-gnatk
Keep going despite syntax errors.

4.2.1. Format and Content of User Listings

bash$ ml750-cof f-gcc -gnatlqv acker mann. adb

XGC Ada nml750-ada/- 1.7/

Copyright 1992-2002 Free Software Foundation, Inc.

Conpi ling: ackermann.adb (source file time stanp: 2001-04-25 16:57: 54)

1. function Ackermann (m n : Integer) return Integer is

2. begin

3. if m=0 then

4. returnn + 1,

5. elsif n =20 then

6. return Ackermann (m- 1, 1);

7. el se

8. return Ackermann (m- 1, Ackermann (m n - 1));
9. end if;

10. end Acker mann;

11.

11 lines: No errors

The assembler can also generate alisting, as follows:

$ mL750-coff-gcc -Wa, -a -c¢ ackermann. adb

1 .file "ackermann. adb"
2 gcc2_conpil ed. :

3 __gnu_conpi |l ed_ada:

4 .text

5 .global _ada_ackernmann
6 _ada_acker mann:

7 0000 B2F0 sisp ri15,1

8 0002 9FEE pshm rl14,r14
9 0004 81EF Ir rid,r15
10 0006 8120 Ir r2,r0
11 0008 8101 Ir ro,rl
12 . L5:

13 000a 8122 Ir r2,r2
14 000c 7A03 jnz L2

15 000e A200 aisp 0,1

16 0010 7411 | .L6

lots of output...

Chapter 4. User Interface and Debugging Facilities

The objdump program can also generate alisting by disassembling the

object code.

0:

IS ARSI

0000000a
a:
c:
e:
10:

b2
of
81
81
81

<.

81
Ta
a2
74

acker mann. o:

fo
ee
ef
20
01

L5>:
22
03
00
11

[ots of output...

Di sassenmbly of section .text:

00000000 <_ada_acker mann>:

sisp
pshm
Ir
Ir

$ nL750- cof f - obj dunp -d ackermann. o
file format coff-nl750

ris, 1
ri4, r14
ri4, r15
r2,r0
ro,rl

r2,r2

ro, 1
17

4.3. Errors and Warnings

No object code is generated for units that contain errors.

There are three levels of messages:

Fatal errors, where the compiler is unable to continue

Errors, which explain the nature of the error

Warnings, which areless severe than errors, and which do not prevent
code generation

If the listing option is set, then the messages will be correctly placed in
the listing, with a pointer to the lexical token relating to the message.

4.4. Other Software Supplied

=

M1750 Adaincludes a number of other tools to support software

development, as follows:

4.4. Other Software Supplied

ml750- cof f - addr 21 i ne
which converts given target addresses to source file line numbers

mL750- cof f - ar
which is used to build object code libraries

mL750- cof f - gdb
which is the symbolic debugger

mL750- cof f - gnat chop
which may be used to divide afile that contains more than one
compilation unit into one file for each unit

mL750- cof f - gnat fi nd
which isused to find Ada symbolsin source files

mL750- cof f-gnat | s
whichisused to list Ada units

mL750- cof f - gnat make
which uses the Adarules to automatically compile, recompile and
build an Ada program

mL750- cof f - gnat prep
which is an Ada pre-processor

mL750- cof f - gnat pst a
which prints the target package Standard

mL750- cof f - gnat psys
which prints the target package System

mL750- cof f - gnat xr ef
which isthe Ada cross reference tool

mL750- cof f- nm
which lists the symbols from object files

mL750- cof f - obj copy
which is used to copy and reformat object code files

mL750- cof f - obj dunp
whichisused to dump information from object codefilesand includes
an option to disassemble

Chapter 4. User Interface and Debugging Facilities

mL750-coff-ranlib
which generates an index to the contents of an archive and storesiit
in the archive

ml750- cof f-run
which is the simulator

mL750- cof f-sim
which is an interactive simulator

ml750- cof f - si ze
which prints the size of an object code or executablefile

mL750- cof f - strings
which lists debug symbols and other strings in an object code file

mL750- coff-strip
which removes debug symbol table information from object code
files

4.5. Debugging Facilities

“|

The GNU debugger, gdb, as customized for M1750 Ada, offers many
features for debugging both at the high-level language level and with
machine code.

Using the host-target link and the XGC monitor, the debugger can debug
programs running on a remote target.

M1750 Adaincludes atarget simulator that accurately s mulatesthe target
instruction set and timing. The simulator includes the following features:

e Simulates the entire M 1750 Microprocessor instruction set
» Simulatesinstruction timing, including wait states

» Prints statistics giving execution time, number of instructionsin each
class, number of nullified instructions

* Printstask state information

» Printstest coverage information, either for the whole program or for
agiven source file

» Supports system calls

Chapter 5 Performance and
Capacity

This chapter describes host performance and capacity, and target code
performance of M1750 Ada.

5.1. Host Performance and Capacity

The compile time performance of M1750 Adais generaly very good.
For example, one application, which consists of 20,000 lines of Ada 95,
compilesin 16 seconds of CPU time, on a 133MHz Pentium UNIX system.
That isarate of 60,000 lines per minute. Thesetimesare for compilations
using the highest optimization level.

Ada package specifications, which typically involve very little generated
code, compile very quickly. On the other hand, extensive use of generic
instantiations or in-line expansion, which can result in large amounts of
generated code, can greatly reduce the line-per-minute rate.

Because of the overhead of 1oading the compiler, the line-per-minute rate
isbigger for alarge compilation unit than for a small one. Also once the
compiler isloaded, further compilations proceed alot faster.

Chapter 5. Performance and Capacity

The Ada compiler builds a compact tree structure in memory for each
compilation unit. Clearly the size of the tree depends on the size of the
unit, but experience suggests that a UNIX system with 16M bytes of real
memory is more than adequate for typical program development, even
where X-Windows and Motif are used. However where very large Ada
units are to be compiled, 24M bytes of memory is a better size, and 32M
bytes should be sufficient for even the largest compilations. No useis
made of any previous compilation of the same unit to increase compilation
speed.

5.2. Target Code Performance

The target code performance of M1750 Adais generally very good. The
compiler generates code that compares well with other compilers, and
which the assembly language programmer would find difficult to beat.
See the examples of generated code in Appendix A, Exampl es of
Generated Code [51].

The results of running the three benchmark programs Seve, Ackermann
and Whetstone are given in Table 5.1, “Benchmark Results’ [32]. These
programs were run on the simulator, with a 10 MHz generic 1750A. 1

Table5.1. Benchmark Results

Benchmark Basic memory Expanded memory
Ackermann 948 mSec 1913 mSec

Sieve 483 mSec 483 mSec
Whetstone 2862 KWIPS 2064 KWIPS

Table 5.2, “Task-Related Metrics’ [33] gives timings for several
task-related features. The clock frequency is 10 MHz.

The generic 1750A runs with one clock cycle per instruction plus one clock cycle per memory access.

|

5.2.1. Optimization and Code Quality

Table 5.2. Task-Related M etrics

Metric Clock Timein Microseconds at
Cycles 10 MHz

Interrupt latency (C.3.1 (15)) 1500 150

From call of trivial protected procedure 1500 150

to return from entry

Call of Clock (D.8 (44)) 170 17

Lateness of adelay (D.9 (13)) 2000 200

Suspend_Until_True, where stateis 800 80

aready True

Set_Trueto return from 1900 190

Suspend_Until_True

Trivial protected procedurecall (D.12 (6)) 820 82

5.2.1. Optimization and Code Quality

M1750 Ada uses many traditional optimizations to improve the size and
execution speed of the generated code. The following list includes some

of the optimizations.

e Sub-expression commoning

* Loop unrolling

» Loop variable induction

e Strength reduction

» Constraint check elimination
» Loop invariant hoisting

* Load and store elimination

* Register alocation

* Unreachable code elimination

e Tail recursion optimization

The overall level of optimization is controlled by the -O option. The
default is optimization level 2. Also many of the optimizations are tied

Chapter 5. Performance and Capacity

to afurther compile-time option and can be enabled or disabled as
necessary.

5.2.2. Constraint Checks

In general, constraint checks are eliminated wherever possible, and
constraint check expressions are subject to all the usual optimizations.

Most redundant checks are eliminated. In the example that follows,
constraint checks such asthose at (1), (2) and (3) are generally eliminated.

| : Integer range -2 .. 2;
J . Integer range 0 .. 10;

type BT is access T,

vV BT,

| := 22 nmod 3; -- (1) no checks needed at run tine
I :=J; -- (2) check on top linit only
Vi=newT (...);

if V.L =... then -- (3) no null access check

- (4) current variant is correct

In the example shown, the run-time checks performed are as follows:
» A check on the top limit only is performed for (2).

e A discriminant check is performed for (4).

5.2.3. Space for Unused Variables

No spaceisallocated for scalar variablesthat are unused. Spacefor arrays
and records is always all ocated.

5.2.4. Space for Unused Subprograms

Subprograms that are declared in a package but unused in a program are
always loaded if the package is loaded.

“|

5.2.5. Evaluation of Static Expressions

5.2.5. Evaluation of Static Expressions

Static expressions are aways eval uated according to the rules of the
Ada 95 Reference Manual Section 4.8. Other compile-time-constant
expressions may be evaluated at compile time too.

5.2.6. Elimination of Unreachable Code

In most cases code that is unreachable is €liminated.

5.2.7. Common Sub-expressions

In the following code example, the address of the element of the array is
computed once.

5.2.8. Loop Invariants

In the following Matrix code, the address of the element A(l, J) is
computed for thefirst iteration, then for subsequent iterationsthe address
isincremented by the size of the element.

for I inl1.. Nloop
for Jinl.. Mloop
A(l,) ...
end | oop;
end | oop;

5.2.9. Bound Checks

In general, redundant array bounds checks are eliminated.

Chapter 5. Performance and Capacity

5.2.10. The pragma Inline

The pragma lnlineis supported, except where the subroutine mentioned
in the pragmaisineligible. Inlining across compilation units may be
disabled using a compile-time option.

5.2.11. Procedure Calling Over head

As an example of the subprogram calling overhead, the code sizes for
Ackermann's function are as follows:

» Total code size for Ackermann's function = 60 bytes
» Instructions executed per call = 14

Stack overflow checking adds 7 instructions to the size of the generated
code.

5.2.12. The Rendezvous

In arendezvous, the accept statement body is executed by the owning
task, never by the calling task. No tasking optimizations are performed
but the special case of anull accept statement is handled separately.

5.2.13. Space Requirements

For atask 74 bytes are allocated for the task control block. In addition,
there are 6 bytes for each task entry. The stack size is either the default
size of 1024 bytes, or the value given in the task type's length clause.

The space overhead for a protected object is 14 bytes.

The size of anull program is approximately 1548 bytes. The size of a
minimal program that uses tasking (tasks, protected objects and delay
statements) isapproximately 4K bytes. These sizesinclude code, read-only
data and variables, but exclude stack space.

?|

Chapter 6 Cross-Compiler and
Run-Time Interfacing

Theinterna structure of the M1750 Ada cross-compiler and run-time
system are described in this chapter.

6.1. Cross-Compiler Issues

The following sections describe the design of the native and cross
compilersin general, and provide a more detailed description of the
M1750 Ada compiler.

6.1.1. Background

The M 1750 Ada compiler is based on the GNAT compiler from New
York University. This compiler was devel oped with funding from the
United States Department of Defense to be the compiler promised in the
Ada reguirements document known as Steelman.

GNAT consists of an Ada 95 front end, a code generator, and amiddle
phase that translates the Ada program into the intermediate language used
by the code generator. The code generator istaken from GCC—the GNU

Chapter 6. Cross-Compiler and Run-Time Interfacing

C Compiler, as are the other tools required to complete the compilation
system.

The Free Software Foundation designed GCC to be the compiler of the
GNU UNIX-like operating system, and was required to support the ANSI
C programming language and work with other UNIX tools. It was also
required to generate high-quality code for any computer that could be
expected to run UNIX.

These requirements led to the implementation of a compiler that became
an obvious base for other programming languages, and today GCC
supports C++, Objective C, Pascal, Modula-3, FORTRAN, and Ada.

GCC has also been devel oped to meet the needs of embedded system
programmers, and can be configured as a cross compiler using aminimal
run-time system. The GNAT Adafront end is the most complete
implementation of the Ada 95 language available. Most of the optional
features are supported, including the distributed systems Annex and the
safety-critical Annex.

6.2. Compiler Phase and Pass Structure

“|

The compiler, the assembler and the linker are three separate programs,
but are normally run under the control of a small driver program, gcc.
Given compile-time options, and a sourcefile, gcc uses atarget-dependent
specification file to determine which passes are required. These are then
runusing UNIX pipesor temporary filesto pass data between the separate
programs. Many of the defaults can be overridden with compile-time
options.

The default for the gcc command isto use the latest version of the native
compiler. For the M1750 Ada compiler afurther driver program is
supplied. Thisiscalled mL750- cof f - gcc and runsthe compiler, assembler
and linker targeted to the M 1750 Microprocessor rather than the native
ones. Either driver can run an earlier version of the compiler, if installed.

The compiler has alanguage-dependent front end, which builds internal
representation of the program being compiled, then callsthe
target-dependent code generator to generate assembly language. The
M1750 Ada compiler includes front end for ANSI C aswell as Ada 95.

TheAdafront-end comprises four phases, which communicate by means
of acompact Abstract Syntax Tree (AST). The implementation details of
the AST are hidden by several procedural interfaces that provide access

6.3. Compiler Module Structure

to syntactic and semantic attributes. The layering of the system, and the
various levels of abstraction, are the obvious benefits of writingin Ada,
in what one might call “proper” Adastyle.

The back end generates code for the M 1750 Microprocessor and includes
phases to handle optimizations, register alocation and code generation.
The code generator uses a pattern matching technique to ensure good use
of the target computer's instruction set.

6.3. Compiler Module Structure

6.3.1. Intermediate Program Representations

The compiler generates assembly language, which isautomatically passed
to the assembler. The assembler generates object code, and several
different object code formats are supported. The utility program objcopy
may be used to change the format among any of those supported.

6.3.2. Final Program Representation

Thefinal program representation is one of anumber of industry-standard
formats, including but not limited to the following:

COFF (default)

Motorola S-Records

Intel Hex
» Tek Hex

The default format is COFF, which can include symbolic information to
help with debugging. When COFF files are converted into the other
formats, some or al of the debugging information is lost.

6.3.3. Compiler Interfacesto Other Tools

M1750 Ada provides information for other tools—notably the GNU
debugger GDB and the GNU profiler GPROF. GPROF is not included
with M1750 Ada, but may be used with the native GNAT compiler to
provide a useful analysis of software that isintended to be run on the

Chapter 6. Cross-Compiler and Run-Time Interfacing

target microprocessor. M1750 Adacan also provideinformation for future
program analysistools. Thisisdone by an implementation-defined pragma
that allows the programmer to annotate the Ada source with arbitrary
comments that are preserved in the internal data structures.

6.4. Compiler Construction Tools

Technically, the crucial asset of the GCC isits mostly
language-independent, target-independent code generator. It produces
code of excellent quality both for CISC machines such as the Intel and
Motorolafamilies, as well as RISC machines such asthe IBM RS/6000.
The machine dependencies of the code generator represent less than 10
per cent of the total code.

To add a new target to GCC, an algebraic description of each machine
instruction must be given using a register-transfer language. Most of the
code generation and optimization then uses the RTL, which GCC maps
when needed into the target machine language. Furthermore, GCC
produces high-quality code, comparable to that of the best compilers.

6.5. Installation

M1750 Adais shipped on CD-ROM. Aswith most UNIX software,
installation is simple. For Solaris, M1750 Adais shipped as a Solaris
package that isinstalled using the Solaris pkgadd command. For Linux
M1750 Adais supplied as one or more compressed tar format files. To
install, enter the appropriate tar command then follow the enclosed
installation instructions. Note that installation requires accessto directories
that may be under the control of the system administrator.

6.6. Run-Time System I ssues

®|

M1750 Adaincludes arun-time system that supports C and Ada. This
includes the basic functions that are common to both languages, such as
program startup, exception management and low-level input/output. In
addition, each language is supported by a number of standard libraries,
as required by the language definition.

6.6.1. The Stack

6.6.1. The Stack

The Adamain program is given a stack, where the location and size are
determined by the linker script file. The stack is used to support
subprogram calls, and typically containsalinked sequence of stack frames
that contain saved registers and subprogram data.

Each task has a stack that is allocated at elaboration time from the free
memory declared in the linker script file. If insufficient free memory is
available, then the predefined exception Storage Error is raised.

Interrupt handlers use a separate stack also declared in the linker script
file.

6.6.2. Subprogram Call and Parameter Handling

The subprogram calling convention is common to both supported
languages, which makesit possible to build programs using a mixture of
Adaand C.

Register saving. M 1750 Adausesthe caller-save convention for saving
registers across subprogram calls. This convention has the advantage that
theregister allocator can take the call into account and reduce the number
of registersto be saved.

Parameter passing. Up to 12 words of parameters are passed in
registers RO to R11. Any further parameters are passed on the stack. For
afunction, or aprocedurewith asingleout parameter, theresult is passed
out in register RO.

Thecall instruction. M1750 Ada usesthe SJS instruction to call a
subprogram. The link is passed on the stack.

Subprogram entry. For subprogram entry, the compiler generates
code to establish anew stack frame. This may include code to check for
stack overflow. The compiler is able to recognize several special cases
where the worst-case code can be improved. In particular, for “leaf”
subprograms that have no need for stack frame data, the stack frameis
completely eliminated and the code to set up the frame, and removeit on
exit, is not generated.

Subprogram exit. For subprogram exit, the compiler generates code
to remove the current stack frame, and return to the calling subprogram.

Chapter 6. Cross-Compiler and Run-Time Interfacing

®|

Thereturnvalue. Functionvaluesarereturned in aregister if possible.
If not then the calling subprogram allocates spacein its stack frame then
passes the address of the space to the called subprogram, which copies
the function value to that address.

6.6.3. Data Representation

The following table shows the number of bits in the data representation
for the M 1750 Microprocessor.

Type M 1750 Micr opr ocessor
Integer 16, 32 and 64 signed
Modular 16, 32 and 64 unsigned
Fixed 16, 32 and 64 signed

Floating Point 32 and 48
Enumeration 16 and 32

Storage allocation for array typesis simply the number of components
multiplied by the allocation for each component. Components can be
packed and bit aligned in some cases. Unconstrained arrays have a
descriptor with lower and upper bounds for each index. Note that
dynamically unconstrained arrays are prohibited.

Storage allocation for record typesisthe sum of theindividual component
allocations, which are byte aligned by default. Components can be packed
and hit aligned in some cases.

The pragma Pack causes pack-able array and record components to be
allocated in adjacent bits without regard to byte boundaries.

6.6.4. Implementation of Ada Tasking

M 1750 Ada supports alimited form of Adatasking that permits static
tasks, protected types and a limited form of rendezvous. The features
supported may be further restricted by use of individual restrictions, or
by the pragma Profile.

Thegeneral strategy isfor the compiler to translate Adatasking operations
into run-time system calls, using data types from the predefined package
XGC.Tasking.

6.7. Exception Handling System

Some language features (delays for example) are supported by child
subprograms.

In addition the package X GC.Preemption_Control isrequired to give the
run-time system exclusive access to the tasking data structures.

The above packages are only included in an application program if the
corresponding language features are used. A null program is linked with
only the minimal run-time system moduleart 0. S.

6.7. Exception Handling System

M1750 Ada supports exception declarations, the raise statement, and
exception handlers. It does not support exception propagati on. We expect
M1750 Ada application programs to regard an exception as a fatal error,
and to log the context of the failure (in non-volatile RAM for example),
then to restart the program.

Thereisno overhead associated with calling or entering a subprogramin
which an exception is declared, other than the space required to hold the
exception descriptor. Thisasmall record that contains the name of the
exception (as a string), and several other items required to satisfy the
needs of the predefined package Ada. Except i ons.

An exception may also beraised by acall of

Ada. Excepti ons. Rai se_Except i on. The advantage of making the call
rather than using the raise statement is that the call may attach a message
to the exception.

Unhandled exceptions, hardware faults and deadline errors are reported
within the run-time system, and can be handled asinterrupts. The default
actionistolog thefault (viaapplication-dependent code), then do awarm
restart.

6.8. 1/0 Interfaces

The predefined library packages Text_10 and Ada.Text_IO are partialy
supported so that test programs can write their resultsto an output stream.
These packages, Direct_1O and Sequential_|O all require system callsto
be supported on the target.

For application program input and output, it is necessary to use low-level
features such as representation clauses and package Machine_Code.

Chapter 6. Cross-Compiler and Run-Time Interfacing

6.9. Documentation

M1750 Adaincludes comprehensive el ectronic documentation for the
compiler, the tools, and the Ada programming language.

B

Chapter 7

Re-targeting and
Re-hosting

M1750 Adais shipped in binary format and source format. The binary
versioniscreated for aspecific host computer (for exampleaSun SPARC
running Solaris 2.6) and for a specific target computer (the

M1750 Microprocessor) and only runs on that host for that target.

The source version consists of the standard GCC distribution, with the
new code generator, assembler, disassembler etc., the GNAT distribution,
and run-time software written for M1750 Ada

7.1. Retargeting

M 1750 Adais acustomization of the GCC compiler, which can be easily
re-targeted to any modern computer. Many targets are already supported
by the standard GCC distribution, which should be checked before
considering retargeting work.

Re-targeting requires considerable compiler expertise, appropriate host
and target hardware, and a suitable compiler development system.

Chapter 7. Re-targeting and Re-hosting

7.2. Rehosting

The preferred host operating system is UNIX. Thisis because UNIX
includes as standard, many of the utility programs that are required to
make and install M 1750 Ada, and which are useful to operate M1750 Ada.
However M 1750 Ada may also be re-hosted (with reduced functionality)
any version of Microsoft Windows that supports 32-bit programs.

7.2.1. Availability of Source Code

The complete source code for M1750 Adais provided as standard.

7.2.2. Source Language

The Adafront end and the Ada predefined library are written in Ada 95.
The C compiler (which is aways included), the object code utilities, the
debugger and the C libraries are written in ANSI C. The run-time start
file, art 0. S, iswritten in assembly language. Other standard UNIX
languages (such as YACC and Perl) are used in the construction of the
compiler.

7.2.3. System Dependencies

®|

M1750 Adais designed to operate in a UNIX environment. Thisis not
necessarily a UNIX system, but one that provides a POSIX compliant
programming interface. Platforms such as Microsoft Windows may also
be used but with reduced functionality.

Chapter 8 Contractual Matters

M1750 Adais copyrighted commercial non-proprietary software.

The M 1750 Ada compiler and associated toolset are based on software
from the Free Software Foundation, Cambridge, MA, and are supplied
under their license. The M1750 Ada run-time system and libraries are
supplied under a specid library license.

8.1. The Compiler License

M 1750 Ada 95 compiler is supplied under the General Public License,
which isincluded on the CD-ROM.

This license requires us to make the source code available so that users
are not prohibited from making further modifications.

Ready-to-install binary versions of the compiler, that have been thoroughly
tested, are available for afee.

The terms and conditions of the license permit you to copy the source or
the binary versions, and to pass these to athird party, providing you do

Chapter 8. Contractual Matters

this on the same terms an condition under which the source or binary
versions were supplied to you.

8.2. The Run-Time License

The run-time system and other run-time code are supplied on alicense
that follows the General Public License, but which explicitly alowsyou
to use the source or object codein your application software without any
of the GPL terms and conditions flowing down.

Asaspecial exception, if other filesinstantiate generics
from this unit, or you link this unit with other filesto
produce an executable, thisunit does not by itself cause
the resulting executable to be covered by the GNU
General Public License. This exception does not
however invalidate any other reasons why the
executable file might be covered by the GNU Public
License.

Therun-timelicenseissupplied free of charge, and there are no recurring
costs associated with using the run-time system.

8.3. Support

®|

The medium on which M1750 Ada s shipped, and the printed
documentation, are warranted for six months from the time of shipment.
They will be replaced free of charge if defective in any way.

The softwareis supplied with six months warranty, which may be extended
for additiona periodsof 12 months, and appliesto one project. The service
offered includes regular product updates, advice on working around

problems and general assistance with using the toolset or run-time system.

The warranty does not include training or customization. These are
available for an additional fee.

Chapter 9 Val | datl On

We regularly test the XGC compilers against the ACV C test suite, and
against its successor, the ACATS tests. While both of these are intended
for compilers that have no built-in restrictions, they offer good coverage
of theVerison 1.7 compilers.

We haveidentified 3487 testsfrom ACATSVersion 2.5 that are applicable
to restricted compilers. Table 9.1, “The Validation Test Classes’ [50]
lists the number of testsin each section, and how many of those tests the
compiler passes.

Chapter 9. Validation

%

Table 9.1. The Validation Test Classes

Group Description Number of Number of Number of
Tests Applicable Passes
Tests

A ClassA tests check for acceptance 75 61 61
(compilation) of language constructs that
are expected to compile without error.

B? Class B tests check that illegal constructs 1510 1510 1510
are recognized and treated as fatal errors.

C Class C tests check that executable 2307 1835 1562°
constructs are implemented correctly and
produce expected results.

D Class D tests check that implementations 4 4 4
perform exact arithmetic on large literal
numbers.

E Class E tests check for constructs that may 32 9 6
reguire inspection to verify.

L¢ Class L tests check that all library unit 89 68 68

dependencieswithin aprogram are satisfied
before the program can be bound and
executed, that circularity among unitsis
detected, or that pragmas that apply to an
entire partition are correctly processed.

3B tests are expected to fail with compilation time errors. Ones that are not applicable due to restrictions may therefore fail for
different reasons from the original intention of the test, but nevertheless fail to compile and are therefore treated as passes.

B group C, 303 tests did not print PASSED but terminated with an unhandled exception. In all 303 cases the exception was
correctly raised then not handled because of the restriction on exception propagation.

°L tests are expected to give errors at compile time, bind time or link time and not to run.

Appendix A Exampl eS Of Gener ated
Code

In this chapter we present examples of code generated by the Version 1.7
compiler.

A.1. The Seve of Eratosthenes

Compiler writers use the Sieve of Eratosthenes benchmark to check code
quality and to compare run-time performance among compilers, languages
and computers.

The benchmark uses the sieve method to compute the number of odd
primes between 3 and 16383.

Appendix A. Examples of Generated Code

9|

ExampleA.1. Source Codefor Sieve

procedure Sieve Benchmark (Result : out Integer) is
Size : constant := 8190;
k, Prime : Natural;
Count : Integer;

type Ftype is array (0 .. Size) of Bool ean;

Flags : Ftype;
begin
for Iter in1.. 10 loop
Count := 0;

for i in0 .. Size loop
Flags (i) := True;
end | oop;

for i in0 .. Size loop
if Flags (i) then
Prime :=1i +i + 3
k:=1i + Pring;
while k <= Size | oop
Flags (k) := Fal se;

k :=k + Prine;
end | oop;
Count := Count + 1;
end if;
end | oop;
end | oop;

Result := Count;
end Sieve Benchnark;

The generated code is given in ExampleA.2, “ Generated Code for
Sieve’ [53]. The code was generated at optimization level 2 with checks
suppressed.

A.1.The Sieve of Eratosthenes

ExampleA.2. Generated Codefor Sieve

o No ol b WwhN -

AR WWWWWWWWWWRNRNRNNNRNONRNNNNRPRPRPRRERERRRRP P P
PO ®OWWNOUORNWMNRPRPOO®OMTOURNRWNRPRPOOO®O~NOUNWNEO ©

0000
0004
0006
0008
000a
000c

000e
0010
0014

0016
001la
001c
001le
0020

0022
0024
0026
002a
002e
0030
0032
0034
0036
0038

003a
003c
003e

0042
0044
0048

AAF2 1FFF
9FEE
81EF
8260
814F
A146

E555
8514
8104

1FFE

9111
B210
F110
7BFC
E533

0000

8114
Al13
8001 0000
4A0A 0000
750F
8103
6000
A202
8123
7405

8114
Al12
9101 0000
A120
4A2A 1FFE
78F9

.file "sieve_benchmark. adb"
gcc2_conpiled.:
__gnu_conpi | ed_ada:
.text
.gl obal _ada_si eve_benchmark
_ada_si eve_benchmark:
sim ri5, 8191
pshm r14,r14
I'r ri4,r15
lisp r6,1
I'r r4,r15
ar rd, ré

. L5:
Xorr r5r5
[im ri,8190,r4
I'r ro, r4

. L9:
stc 1,0,r1
sisp rl,1
cr rl,r0
jge .L9
Xorr r3, r3

. L15:
I'r ri, r4
ar r1,r3
| ro,0,r1
cim ro,0
jez .L14
I'r ro,r3
sl ro, 1
aisp 10,3
I'r r2,r3
] .L27

. L19:
I'r ri, r4
ar ri,r2
stc 0,0,r1

.L27:
ar r2,r0
cim r2,8190
jle .L19

Appendix A. Examples of Generated Code

42 004a A250 aisp r51

43 . L14:

44 004c A230 aisp r3,1

45 004e 4A3A 1IFFE cim 13,8190
46 0052 78E8 jle .L15

47 0054 A260 aisp 16,1

48 0056 F269 cisp 16,10
49 0058 78DB jle .L5

50 005a 8105 Ir ro, rb
51 005c 81FE Ir ris,rl4
52 005e 8FEE popm rl4,r14
53 0060 4AF1 1FFF aim r15,8191
54 0064 7FFO urs ris

A.2. Ackermann's Function

Using an informal functional notation, Ackermann's function is defined

asfollows:
A(0, n) =n+l
Alm 0) = A(m1, 1)
Alm n) = A(m1, Alm n-1))

From the point of view of benchmarking, Ackermann’s function is
interesting because it consists amost entirely of subprogram calls, and
nests the calls deeply if required. The number of calls and the degree of
nesting is controlled using the two arguments.

We use A(3,6) as the benchmark. This gives us 172233 calls, with a
nesting depth of 511.

“

A.2. Ackermann's Function

ExampleA.3. Ada Source Code for Ackermann's Function

function Ackermann_Benchmark (M N : in Integer) return Integer is
begin
if M= 20 then
return N + 1,
elsif N=0 then
return Ackermann_Benchmark (M- 1, 1);
el se

return Ackermann_Benchmark (M- 1, Ackermann_Benchmark (M N -

end if;
end Acker mann_Benchmark;

1

Ackermann's function provides two opportunities for tail recursion
optimization, both of which aretaken here. Thetwo parametersare passed
in register, and the calling procedure saves any live registers acrossacall.

The generated code is given in Example A .4, “ Generated Code for
Ackermann's Function” [56]. For this version of the summary the code
was generated at optimization level 2 with all checks on. Recompiling
with checks off saves 14 bytes.

Appendix A. Examples of Generated Code

?|

ExampleA.4. Generated Code for Ackermann's Function

O No ol h WwhN -

AR WWWWWWWWWWRNRNRNNNRNONRNNNNRPRPRPRRERERRRRP PR P
PO ®OWWNOUORNWMNRPRPOO®OMTOURNRWNRPRPOOO®O~NOUNWNEO ©

0000
0002
0004
0006
0008
000a
000c
0010
0014
0016

0018
001c
001le
0020

0022
0026
0028
002a
002c

002e
0032
0036
0038
003a
003c
0040
0044

0046
0048
004a
004c

"acker mann_benchmar k. adb”

ada:

.gl obal _ada_acker mann_benchmark

file
gcc2_conpi | ed.
__gnu_conpil ed_
.text

_ada_ackermann_
B2F0 sisp
9FEE pshm
81EF Ir
8120 Ir
8101 Ir
81BF Ir
4AB9 8000 Xorm
FOBO 0000 c
7B02 bge
7708 bex

. L5:
4A2A 0000 cim
7A03 jnz
A200 ai sp
7413]

.L2:
4A0A 0000 cim
7TA04 jnz
B220 sisp
8200 lisp
74F6]

. L4:
8532 FFFF im
903E 0001 st
8110 Ir
B210 sisp
8102 Ir
7EFO0 0000 Sj s
802E 0001 I
T4EA]

. L6:
81FE Ir
8FEE popm
A2F0 ai sp
7FFO urs

benchmar k
ri5,1
rl4,ri4
r14,r15
r2,r0

ro, rl
r11,ri15
r11, 0x8000
r1l, stack limt
. +4

8

r2,0
L2
ro, 1
.L6

ro, 0
.L4
r2, 1
ro, 1
.L5

r3,-1,r2

r3,1,rl4

rl, r0

rl, 1

ro,r2

r15, ada_ackermann_benchmar k
r2,1,rl4

.L5

ri15,ri4
rl4,ri4
ri5,1
ri15s

Appendix B Restrictions and Profiles

This Appendix defines how the Ada 95 restrictions, accessible through
the pragma Restrictions, are supported. Unsafe features such asrun-time
dispatching and heap management are not supported in the run-time
system, so al the restrictions that are relevant for these features are set
to True by defaullt.

The following restrictions are built in. That is, they cannot be turned off
and are exploited by the compiler to offer better-quality generated code
than would otherwise be possible.

* No_Abort_Statements

* No_Dispatch

* No_Local_Protected Objects
* No_Requeue

* No_Task_Attributes

* No_Task Hierarchy

e No_Terminate Alternatives

Appendix B. Restrictions and Profiles

?|

The implementation-defined pragma Profile may also be used to set and
unset restrictionsthat correspond to acertain application area. The profiles
supported are as follows:

Table B.1. Supported Profiles

Profile Name

Description

XGC
Ravenscar

Restricted Run_Time

No_Run_Time

Thisisthedefault profile and offerstheleast restrictions.

Thisalowsalimited form of tasking that includes static
tasks, protected objects, the delay until statement and
interrupts.

This severely restricts the use of non-deterministic
language features (including tasking) and is suitable for
genera avionics applications.

This profile prohibits al callsto the predefined Ada
library and isuseful for safety-critical applications. Calls
to the compiler support library are not restricted.

Table B.2, “Profilesand Restrictions’ [59] givestheindividual restrictions
for each profile. Note that the built-in restrictions apply to all profiles.

Table B.2. Profiles and Restrictions

Restriction Ada 95 Reference Default Ravenscar Restricted
Manual Section Run_Time
Boolean Entry Barriers XGC (Ravenscar) False True True
Immediate Reclamation RM H.4(10) False False False
No_Abort_Statements RM D.7(5), H.4(3) True True True
No_Access Subprograms RM H.4(17) False True True
No_Allocators RM H.4(7) False False True
No_Asynchronous_Control RM D.9(10) False True True
No_Caendar XGC False True True
No_Delay RM H.4(21) False False True
No_Dispatch RM H.4(19) True True True
No_Dynamic_Interrupts XGC True True True
No_Dynamic_Priorities RM D.9(9) False True True
No_Elaboration_Code XGC False False True
No_Entry_Cals In_Elaboration Code XGC False True True
No_Entry_Queue XGC True True True
No_Enumeration_Maps XGC False False True
No_Exception Handlers XGC False False True
No_Exceptions RM H.4(12) False False False
No_Fixed Point RM H.4(15) False False False
No_Foating_Point RM H.4(14) False False False
No_Implementation_Attributes XGC False False True
No_Implementation_Pragmas XGC False False True
No_Implementation_Restrictions XGC False False True
No_Implicit_Conditionals XGC False False True
No_Implicit_Heap_Allocations RM D.8(8), H.4(3) False True True
No_Implicit_L oops XGC False False False
No 10 RM H.4(20) False True True
No_Loca_Allocators RM H.4(8) False True True
No_Local_Protected_Objects XGC True True True
No_Nested Finalization RM D.7(4) True True True

No_Protected Type Allocators XGC True True True

Appendix B. Restrictions and Profiles

%

Restriction Ada 95 Reference Default Ravenscar Restricted
Manual Section Run_Time
No_Protected Types RM H.4(5) False False True
No_Recursion RM H.4(22) False True True
No_Reentrancy RM H.4(23) False False False
No_Relative Delay XGC False True True
No_Requeue XGC True True True
No_Select_Statements XGC (Ravenscar) False True True
No_Standard_Storage Pools XGC True True True
No_Streams XGC True True True
No_Task_Allocators RM D.7(7) False True True
No_Task_Attributes XGC True True True
No_Task_Hierarchy RM D.7(3), H.4(3) True True True
No_Task_Termination XGC True True True
No_Terminate Alternatives RM D.7(6) True True True
No_Unchecked_Access RM H.4(18) False True True
No_Unchecked_Conversion RM H.4(16) False False True
No_Unchecked_Deallocation RM H.4(9) True True True
No_Wide Characters XGC False True True
Static_Priorities XGC False True True
Static_Storage Size XGC False True True

Table B.3, “Profilesand Numerica Restrictions’ [60] givestherestrictions
concerning numerical limits.
Table B.3. Profilesand Numerical Restrictions

Restriction Ada 95 Reference Default Ravenscar Restricted
Manual Section Run_Time
Max_Asynchronous_Select Nesting RM D.7(18), H.4(2) 0 0 0
Max_Protected_Entries RM D.7(14) 1 1 1
Max_Select_Alternatives RM D.7(12) Undefined O 0
Max_Storage At _Blocking RM D.7(17) 0 0 0
Max_Task Entries RM D.7(13), H.4(2) Undefined 0 0
Max_Tasks RM D.7(19), H.4(2) Undefined Undefined Undefined
Max_Entry_Queue Depth Ravenscar specific 1 1 1

Violation of therestriction Max_Entry Queue Depth is detected at run
time and raises the predefined exception Program_Error.

B

Appendix C The Predefined Library

Thisappendix liststhe unitsin the Ada 95 predefined library, and indicates
whether aunit is supported or not. The answer “Yes’ means the unit is
supported in the default profile, and maybe in the other profiles. The
answer “Restricted...” means the unit is not supported in any profile
because of abuilt-in restriction.

Appendix C.The Predefined Library

Table C.1. Predefined Library Units

Unit Name Supported?
Ada Yes
AdaAsynchronous Task_Control Yes
Ada.Calendar Yes®
Ada.Characters Yes
Ada.Characters.Handling Yes
AdaCharacters.Latin 1 Yes
Ada.Characters.Wide Latin 1 Yes
Ada.Command _Line Not applicable
AdaDecimal Yes
Ada.Direct_|O Yed
Ada.Dynamic_Priorities Yes
Ada.Exceptions Yes
AdaFinalization Restricted No_Implicit_Heap Allocations
Ada.lnterrupts Yes
Ada.lnterrupts.Names Yes
AdalO_Exceptions Yes
Ada.Numerics Yes
Ada.Numerics.Complex_Elementary_Functions Yes
Ada.Numerics.Complex_Types Yes
Ada.Numerics.Discrete Random Not applicable
Ada.Numerics.Elementary Functions Yes
Ada.Numerics.Float_Random Not applicable
Ada.Numerics.Generic_Complex_Elementary_Functions Yes
Ada.Numerics.Generic_Complex_Types Yes
Ada.Numerics.Generic_Elementary Functions Yes
AdaRea_Time Yes
Ada.Sequential_|O Yes
AdaStorage 10 Yes
Ada.Streams Restricted No_Dispatch
Ada.Streams.Stream_|1O Restricted No_Dispatch
Ada.Strings Yes

2|

Unit Name Supported?
Ada.Strings.Bounded Yes
Ada.Strings.Fixed Yes
Ada.Strings.Maps Yes
Ada.Strings.Maps.Constants Yes
Ada.Strings.Unbounded Not available

Ada.Strings.Wide_Bounded
AdaStrings.Wide Fixed
Ada.Strings.Wide Maps

Ada. Strings.Wide_Maps.Wide_Constants
Ada.Strings.Wide_Unbounded
Ada.Synchronous_Task_Control
AdaTags

Ada.Task_Attributes
AdaTask_ldentification
AdaText IO
AdaText_10.Complex_I1O
AdaText_|0.Editing

AdaText 10.Text_Streams
Ada.Unchecked Conversion
Ada.Unchecked Deallocation
AdaWide Text 10

AdaWide Text_|0.Complex_IO
AdaWide Text 10.Editing
AdaWide Text |0.Text_Streams
Calendar

Direct IO

|O_Exceptions

Interfaces

Interfaces.C
Interfaces.C.Pointers
Interfaces.C.Strings
Interfaces.COBOL

Restricted No_Implicit_Heap_Allocations
Restricted No_Implicit_Heap Allocations
Restricted No_Implicit Heap Allocations
Restricted No_Implicit_Heap_Allocations
Restricted No_Implicit_Heap Allocations
Yes

Restricted No_Dispatch

No

Yes

Yed’

Not applicable

Not applicable

Not applicable

Yes

Restricted No_Unchecked_Deallocation
Not applicable

Not applicable

Not applicable

Not applicable

Yes®

Yed

Yes
Yes
Yes
Yes
Yes
Not applicable

Appendix C.The Predefined Library

%

Unit Name Supported?
Interfaces.FORTRAN Not applicable
Machine_Code Yes
Sequential 10 Yes

System Yes
System.Address to_Access Conversions Yes
System.Machine_Code Yes

System.RPC
System.Storage Elements
System.Storage Pools
Text_IO

Unchecked Conversion
Unchecked Deallocation

Not available (depends on Ada.Streams)
Yes

Not available (depends on Ada.Finalization)
Yes

Yes

Restricted No_Unchecked Deallocation

8Restricted to POSIX date range, which is Jan 1, 1970 to Jan 19, 2038

B\When supported by appropriate system calls

