
M1750 Ada
Technical Summary

For mission-critical applications

www.xgc.com

M1750 Ada Technical
Summary
For mission-critical applications

Order Number: M1750-ADA-TS-040402

XGC Software

London
UK
<www.xgc.com>

M1750 Ada Technical Summary: For mission-critical applications
by Chris Nettleton and Ellis Thomas

Published April 2, 2004
© 1998, 1999, 2000, 2001, 2002, 2003, 2004 XGC Software

Abstract

This report presents technical and commercial information about Version 1.7 of the M1750 Ada compilation system.

Acknowledgments

XGC Software acknowledges contributions from the following organizations:

• The European Space Agency, contracts 11935 and 11374

• The UK Ministry of Defence, HOLD III contract

• TRW Aerospace, HOLD III contract

• New York University and ACT, Inc., for the GNAT front end

• The Free Software Foundation, for the base level C compiler, assembler and linker.

This manual is written in XML that conforms to DocBook Version 4.3. See The DocBook web site [http://www.docbook.org/] for more information.

Notice

The information in this document is subject to change without notice and should not be construed as a commitment by XGC Software. XGC
Software assumes no responsibility for any errors that may appear in this document.

http://www.docbook.org/

Contents

Preface xi

Introduction 1Chapter 1

1.1 Performance 2
1.2 Restrictions 2
1.3 User Documentation 2
1.4 Media 2
1.5 Warranty 3

Host and Target 5Chapter 2

2.1 Cross-Development System 5
2.2 Host Configurations 6
2.3 Host Operating System 6
2.4 Target Configurations 6
2.5 Target Operating System 7
2.6 Programming Support Environment 7
2.7 Host-Target Communication 7

iii

Language-Related Issues 9Chapter 3

3.1 Overview 9
3.2 Section 2: Lexical Elements 10
3.3 Section 3: Declarations and Types 11

3.3.1 Uninitialized Variables 11
3.3.2 Enumeration Types 11
3.3.3 Integer Types 11
3.3.4 Floating Point Types 12
3.3.5 Fixed Point Types 13

3.4 Section 4: Names and Expressions 13
3.5 Section 5: Statements 14
3.6 Section 6: Subprograms 14
3.7 Section 7: Packages 14
3.8 Section 8: Visibility Rules 14
3.9 Section 9: Tasks and Synchronization 14

3.9.1 type Duration 15
3.9.2 Shared Variables 15

3.10 Section 10: Program Structure and Compilation
Issues 16
3.11 Section 11: Exceptions 16
3.12 Section 12: Generic Units 17
3.13 Section 13: Representation Issues 17

3.13.1 Definitions from the predefined package
System 18
3.13.2 The type Address 18

3.14 Input-Output 19
3.15 Annex A: Predefined Language Environment 19
3.16 Annex B: Interface to Other Languages 21
3.17 Annex C: Systems Programming 21
3.18 Annex D: Real-Time Systems 22
3.19 Annex E: Distributed Systems 23
3.20 Annex F: Information Systems 23
3.21 Annex G: Numerics 23
3.22 Annex H: Safety and Security 23
3.23 Annex J: Obsolescent Features 23
3.24 Annex K: Language-Defined Attributes 24
3.25 Annex L: Language-Defined Pragmas 24

User Interface and Debugging Facilities 25Chapter 4

4.1 Compiler Invocation 25
4.2 Compilation 26

4.2.1 Format and Content of User Listings 26

iv

M1750 Ada Technical Summary

4.3 Errors and Warnings 28
4.4 Other Software Supplied 28
4.5 Debugging Facilities 30

Performance and Capacity 31Chapter 5

5.1 Host Performance and Capacity 31
5.2 Target Code Performance 32

5.2.1 Optimization and Code Quality 33
5.2.2 Constraint Checks 34
5.2.3 Space for Unused Variables 34
5.2.4 Space for Unused Subprograms 34
5.2.5 Evaluation of Static Expressions 35
5.2.6 Elimination of Unreachable Code 35
5.2.7 Common Sub-expressions 35
5.2.8 Loop Invariants 35
5.2.9 Bound Checks 35
5.2.10 The pragma Inline 36
5.2.11 Procedure Calling Overhead 36
5.2.12 The Rendezvous 36
5.2.13 Space Requirements 36

Cross-Compiler and Run-Time Interfacing 37Chapter 6

6.1 Cross-Compiler Issues 37
6.1.1 Background 37

6.2 Compiler Phase and Pass Structure 38
6.3 Compiler Module Structure 39

6.3.1 Intermediate Program Representations 39
6.3.2 Final Program Representation 39
6.3.3 Compiler Interfaces to Other Tools 39

6.4 Compiler Construction Tools 40
6.5 Installation 40
6.6 Run-Time System Issues 40

6.6.1 The Stack 41
6.6.2 Subprogram Call and Parameter Handling 41
6.6.3 Data Representation 42
6.6.4 Implementation of Ada Tasking 42

6.7 Exception Handling System 43
6.8 I/O Interfaces 43
6.9 Documentation 44

Re-targeting and Re-hosting 45Chapter 7

7.1 Retargeting 45

v

M1750 Ada Technical Summary

7.2 Rehosting 46
7.2.1 Availability of Source Code 46
7.2.2 Source Language 46
7.2.3 System Dependencies 46

Contractual Matters 47Chapter 8

8.1 The Compiler License 47
8.2 The Run-Time License 48
8.3 Support 48

Validation 49Chapter 9

Examples of Generated Code 51Appendix A

A.1 The Sieve of Eratosthenes 51
A.2 Ackermann's Function 54

Restrictions and Profiles 57Appendix B

The Predefined Library 63Appendix C

vi

M1750 Ada Technical Summary

Tables
3.1 Attributes of the Predefined Integer Types 12
3.2 Basic Attributes of Floating Point Types 13
3.3 Attributes of the Predefined Type Duration 15
3.4 Named Numbers from package System 18
5.1 Benchmark Results 32
5.2 Task-Related Metrics 33
9.1 The Validation Test Classes 50
B.1 Supported Profiles 58
B.2 Profiles and Restrictions 59
B.3 Profiles and Numerical Restrictions 60
C.1 Predefined Library Units 64

vii

viii

Examples
A.1 Source Code for Sieve 52
A.2 Generated Code for Sieve 53
A.3 Ada Source Code for Ackermann's Function 55
A.4 Generated Code for Ackermann's Function 56

ix

x

Preface

This summary provides technical information about the M1750 Ada cross
compiler. It is intended for anyone evaluating cross compilers for
development environments using workstations running the UNIX
operating system, and microprocessor targets. The reader is expected to
be familiar with the Ada 95 programming language.

The information in this summary is organized according to the Ada-Europe
Guidelines for Ada compiler specification and selection. These guidelines
pose questions about an Ada implementation that are designed to assist
vendors and users of Ada compilers. Although written for Ada 83, these
guidelines continue to be relevant for Ada 95, and for this summary, we
include answers to any Ada 95-specific questions.

Questions from the guidelines are not restated; topics are discussed in a
manner that makes it unnecessary to refer to the original questions.
Supplementary information is provided as appropriate. An appendix shows
listing from two small compilations to help answer many of the questions
related to compilation listings and error messages. The presentation is
terse to provide as much information as possible in a compact form.

The Ada-Europe Guidelines for Ada compiler specification and selection
were written in 1982 by J.C.D. Nissen, B.A. Wichmann, and other

xi

members of Ada-Europe, with partial support from the Commission of
the European Communities. They are available from the National Physical
Laboratory as NPL report DITC 10/82, ISSN 0262-5369. They were also
reprinted in Ada Letters, Vol. III, No. 1 (July, August 1983), pp. 37-50.
(Ada Letters is published every two months by SIGAda, the ACM Special
Interest Group on Ada.)

Version 1.7. Version 1.7 adds exception handling but does not support
exception propagation (down the dynamic stack). Handlers can only
handle exceptions raised locally. Version 1.7 also adds a static subset of
programming by extension. Dispatching is not supported and the attribute
'Class is prohibited.

Version 1.6. Version 1.6 offers broader functionality with a smaller
run-time system. The default profile is extended with allocators, catenation
operators and the Ada 83 rendezvous. Functions that return unconstrained
types are also permitted.

Version 1.5. Version 1.5 includes further support for real-time systems.
Several Ada child packages that were previously absent are now available
in the default profile. We have added the pragma Profile, which offers a
choice of five mission-critical profiles. Note that M1750 Ada still prohibits
non-static tasks, the rendezvous, allocators and exception handlers, and
other Ada features that depend on these. Version 1.5 also supports
expanded memory.

Version 1.2. The main change since Version 1.1 is the addition of a
limited form of Ada tasking that supports the Ravenscar Profile. The
profile includes tasks and protected objects declared in library packages,
and a limited number of features from Annexes C and D.

Version 1.1. Version 1.1 offers all the features of the safety-critical
HOLD III compiler developed for Lucas Aerospace but targeted to the
M1750 rather than the Motorola MC68020.

xii

Preface

IntroductionChapter 1

M1750 Ada is a cross-development system providing a production-quality
implementation of a restricted Ada 95 language
(ANSI/ISO/IEC-8652:1995). Significant features of M1750 Ada are as
follows:

• Minimum program size approximately 1500 bytes

• Accurate delays with 200 microseconds1 delay latency over whole
range

• Low overhead 5K byte tasking system with 200 microseconds1 task
switch

• Full support for interrupts attached to protected subprograms

• Comprehensive printed and on-line user manuals

• Available off the shelf as a fully supported commercial product

• Evaluation copies available for down-load

1Generic MIL-STD-1750 at 10 MHz

1

• Compatible with GCC-1750, the C/C++ compilation system for the
MIL-STD-1750A

• Built-in restrictions for mission-critical applications (see Appendix B,
Restrictions and Profiles [57])

1.1. Performance

M1750 Ada includes a high-performance run-time system that optionally
supports Ada tasking, interrupt handling and real-time scheduling. For
more information on the real-time performance, see Chapter 5,
Performance and Capacity [31].

1.2. Restrictions

Several sets of restrictions are supported. These are known as profiles,
and may be employed to ensure an appropriate level of software integrity.
For more information on restrictions and profiles see Appendix B,
Restrictions and Profiles [57].

1.3. User Documentation

The documentation provided with M1750 Ada includes the following:

• Getting Started with M1750 Ada, which describes how to install
M1750 Ada, and how to write and run a small application program.

• M1750 Ada Language Reference Manual Supplement, which includes
implementation-specific information required by the Ada standard.

• M1750 Ada User's Guide (three volumes), which describes how to
use the M1750 Ada toolset.

All on-line documentation is shipped in source format (XML), HTML
format, and Adobe® PDF format.

1.4. Media

M1750 Ada is shipped on CD-ROM, and includes both on-line and printed
user manuals.

2

Chapter 1. Introduction

1.5. Warranty

M1750 Ada includes six months support to help users install and become
familiar with the compiler and using the Ada language on the M1750.

3

1.5. Warranty

4

Host and TargetChapter 2

This chapter gives details of the following:

• the host configurations on which the compiler can run

• the target configurations on which compiled programs can run

• the means for transferring a compiled program from the host computer
to the target computer.

2.1. Cross-Development System

A cross development is used where programs written on one machine are
compiled to run on another. The machine used for software development
is the host and the machine on which the programs run is the target.

Typically, this form of development is associated with embedded software
for real-time applications. This approach enables the target computer to
be optimized for the embedded application and the development tools to
exploit the effectiveness of the host computer.

5

2.2. Host Configurations

The host computer should be a UNIX workstation or personal computer
that meets the following minimum requirements:

• 50MHz, 32-bit CPU

• 1G byte hard disk drive

• 24M bytes RAM

• High-resolution monitor with X Windows and window manager

• Network interface supporting TCP/IP

• Serial interface for host-target link

By adding extra terminals, a system like this can support several users at
the same time.

2.3. Host Operating System

The standard host operating systems are as follows:

• Solaris® 2.6 or above, running on a Sun SPARC® computer.

• RedHat® Linux Version 7.3 or above, running on an IBM PC or
compatible computer.

See Section 7.2, “Rehosting” [46] for information about additional host
computers.

2.4. Target Configurations

For M1750 Ada Version 1.7, the standard target is ERA evaluation Kit,
as developed for the European Space Agency.

Other targets that conform to the MIL-STD-1750A/B specification may
also be used.

6

Chapter 2. Host and Target

2.5. Target Operating System

No target operating system is required since M1750 Ada includes all the
necessary run-time system functions to support application programs
running on a bare target board.

2.6. Programming Support Environment

M1750 Ada includes a tool that determines which program units need
compiling or recompiling, then runs the compiler and linker as necessary
to build a consistent program.

In addition, the programming support environment consists of the standard
GNU/UNIX software development tools, which provide configuration
management, automated program configuration and construction,
automated regression testing, and much more.

We recommend the Bash shell since it offers conformance to the POSIX
standard, and supports command line working. Bash is not included with
M1750 Ada, but is available from any GNU site.

2.7. Host-Target Communication

Two methods are available for transferring data from the host to the target.
At the host the following facilities are provided:

• A standard RS-232-C port connected to UNIX terminal interface

• A TCP/IP network connection

Either of these communication standards can be used provided that a
compatible capability is available on the target.

7

2.5. Target Operating System

8

Language-Related IssuesChapter 3

The Ada 95 Reference Manual, ANSI/ISO/IEC-8652:1995, explicitly
allows variations between Ada processors in a number of aspects. This
chapter describes the language supported by M1750 Ada and is organized
according to the appropriate chapters and annexes of the Ada Manual.

3.1. Overview

M1750 Ada supports several restricted Ada 95 profiles that prohibit the
use of unsafe language features, and which are compatible with the
requirements for high-integrity software applications.

• The XGC profile (the largest profile and the default)

• Ravenscar (which includes a limited form of tasking)

• Restricted run-time system (for ARINC 653 applications)

• No run-time system (for safety-critical applications)

Language features that are always restricted are not supported at all. This
means that the compiler and run-time system can be optimized for the

9

safe subsets and unlike unrestricted compilers, need not be hindered by
the need to support complex and inefficient features that are never used.

The gain in efficiency is evident in the performance figures, which are
an order of magnitude smaller and faster than competing compilation
systems that support the full language.

The following list gives language features that are prohibited. The
references to sections in this list apply to the Ada 95 Reference Manual.
Further details appear in the respective section below:

Ada RM SectionProhibited Feature

Annex EPartitions of Distributed Systems

Sections 3.1 and 11Exception propagation

Section 7.6Finalization in packages

Annex ASome predefined packages

Section 13Streams

Section 3.9Class-wide operations with tagged types

3.2. Section 2: Lexical Elements

Ada source programs are represented in standard text files, using Latin-1
coding. Latin-1 is ASCII with additional characters used for representing
foreign languages. The lower half (character codes 16#00# ... 16#7F#) is
identical to standard ASCII coding, but the upper half is used to represent
the additional characters. Any of these extended characters is allowed in
character or string literals. Moreover, extended characters that represent
letters can be used in identifiers.

On the target M1750 Ada supports the character sets defined by the Ada 95
Reference Manual. These are the predefined types Character and
Wide_Character.

The predefined type Character is a character type whose values
correspond to the 256 code positions of Row 00 (also known as Latin-1)
of the ISO 10646 Basic Multi-lingual Plane (BMP).

The predefined type Wide_Character is a character type whose values
correspond to the 65536 code positions of the ISO 10646 Basic
Multi-lingual Plane (BMP).

The maximum number of characters in a source line is 255.

10

Chapter 3. Language-Related Issues

The maximum length of a lexical element is 255 characters.

3.3. Section 3: Declarations and Types

Declarations and types are supported as specified in the Ada standard
except for tagged types (See RM Section 3.9).

3.3.1. Uninitialized Variables

When the compile time option -Wuninitialized is used, the compiler
flags variables that may be uninitialized.

3.3.2. Enumeration Types

Enumeration types are supported as defined in the Ada 95 Reference
Manual. Additional code and read-only data are generated to support the
attributes 'Image, 'Pos and 'Val.

The size of enumeration objects is the minimum required to accommodate
all the values, and including any representations given in a representation
clause. The compiler selects a size of 16 or 32 bits as appropriate.

Enumeration types may be packed to reduce wasted space in arrays of
enumeration objects.

3.3.3. Integer Types

M1750 Ada provides five predefined Integer types:

• the type Short_Short_Integer

• the type Short_Integer

• the type Integer

• the type Long_Integer

• the type Long_Long_Integer

Table 3.1, “Attributes of the Predefined Integer Types” [12] gives the
values of the attributes Size, First and Last for these types.

11

3.3. Section 3: Declarations and Types

Table 3.1. Attributes of the Predefined Integer Types

LastFirstSizeType

215-1-21516Short_Short_Integer

215-1-21516Short_Integer

215-1-21516Integer

231-1-23132Long_Integer

263-1-26364Long_Long_Integer

User-Defined Types. For a user-defined integer type, the compiler
automatically selects the smallest compatible predefined integer type as
the base type. For example, given the following type definition:

type My_Integer is range -10 .. +10;

the compiler uses Short_Short_Integer as the base type, and
My_Integer'Size is 16 bits.

Modular Types. M1750 Ada supports modular types up to 64 bits in
size. Like the integer types, these are represented in 16, 32 or 64 bits as
appropriate. The value of Max_Nonbinary_Modulus is 32767. The
following declarations are legal:

type Unsigned_8 is mod 256;
type Unsigned_16 is mod 65536;
type Unsigned_32 is mod 2**32;
type Unsigned_64 is mod 2**64;
type Index is mod 32767;

The standard Ada 95 operators for modular types are supported.

3.3.4. Floating Point Types

M1750 Ada provides four predefined floating-point types:

• the type Short_Float

• the type Float

12

Chapter 3. Language-Related Issues

• the type Long_Float

• the type Long_Long_Float

The types Short_Float and Float are represented by the 32-bit single
precision 1750 format; the types Long_Float and Long_Long_Float are
represented by the 48-bit 1750 format.

Table 3.2, “Basic Attributes of Floating Point Types” [13] gives the values
of the attributes for the predefined floating-point types.

Table 3.2. Basic Attributes of Floating Point Types

Long Long
Float

Long FloatFloatShort FloatAttribute

48483232Size

9966Digits

2222Machine_Radix

39392323Machine_Mantissa

127127127127Machine_Emax

-128-128-128-128Machine_Emin

FalseFalseFalseFalseMachine_Rounds

FalseFalseFalseFalseMachine_Overflows

3.3.5. Fixed Point Types

M1750 Ada supports fixed-point types up to 64 bits in size using 16, 32
or 64 bits as appropriate. The value of 'Small may be either a power of
two, or an arbitrary value given in a representation clause.

3.4. Section 4: Names and Expressions

Names and expressions are fully supported in the default profile.

Static expressions of the type universal_integer or universal_real
have no limit on the implemented range or precision. Evaluation of such
expressions is carried out by a general universal arithmetic package.

Non-static expressions of type universal_integer are evaluated at run
time using the smallest predefined integer type with sufficient range.

13

3.3.5. Fixed Point Types

If run-time floating point support is available, non-static expressions of
type universal_real are evaluated at run time using 64-bit
double-precision floating point.

3.5. Section 5: Statements

Some task-related statements are prohibited. All other statements are
supported as described in the Ada 95 Reference Manual.

The prohibited statements are:

• terminate alternative for selective wait

• abort

• requeue

3.6. Section 6: Subprograms

Subprograms are fully supported.

3.7. Section 7: Packages

Except for finalization, packages are fully supported.

3.8. Section 8: Visibility Rules

Visibility rules are fully supported.

3.9. Section 9: Tasks and Synchronization

Tasks, protected types and task-related statements are permitted subject
to any user restrictions.

• Task declarations are only permitted at the library level. Tasks may
not be dynamically allocated. Tasks may not terminate.

• Protected objects are only permitted at the library level. Protected
objects may not be dynamically allocated. The maximum number of

14

Chapter 3. Language-Related Issues

entries for a protected object is one. The entry barrier must be a simple
Boolean variable, and a maximum of one task may wait on the entry.

• The package Ada.Real_Time is provided, and the type
Ada.Real_Time.Time may be used in a delay until statement.

• The package Ada.Synchronous_Task_Control is provided and offers
an alternative and possibly more efficient way for tasks to
communicate.

• The Ada 83 rendezvous is supported except for the terminate
alternative.

Except for the restrictions on the number of tasks in an entry queue and
the nested rendezvous (which are checked at run time), the compiler
rejects any program that does not conform to the default or given Profile.

3.9.1. type Duration

The predefined type Duration is 32-bit fixed-point type. The value of the
least significant bit is one microsecond. Table 3.3, “Attributes of the
Predefined Type Duration” [15] gives the attributes of this type.

Table 3.3. Attributes of the Predefined Type Duration

CommentValueAttribute

One microsecond1.0E-6Delta

One microsecond1.0E-6Small

Approx. -35 minutes-2147.483648First

Approx. 35 minutes2147.483647Last

The types Time and Time_Span from predefined package Ada.Real_Time
have the same representation as type Duration. However the type Time
is declared as a modular type and comparisons of two times correctly
account for the 71-minute cycle.

3.9.2. Shared Variables

M1750 Ada supports the pragma Volatile, which guarantees that a variable
is fetched from memory each time it is referenced, and is stored in memory
on each assignment.

15

3.9.1. type Duration

M1750 Ada also supports the pragmas Atomic, Atomic_Components,
and Volatile_Components, as specified in Section C.6 of the Ada 95
Reference Manual.

3.10. Section 10: Program Structure and Compilation Issues

An M1750 Ada program may use any mixture of programming languages
supported by the compiler, assembler or the linker. One procedure must
become the main program, but this need not be written in Ada 95.

If the main program is written in Ada then it must be a parameter-less
library procedure. If the main program is written in C then the arguments
to function main shall be null.

The main program is called by a run-time system module (art0.S) that
initializes the stack and variable data area, and which contains code to
handle traps and interrupts. Code in art0.S can also copy program
sections from the boot PROM into RAM.

For the M1750 Microprocessor, the entire program consists of four items:

• The startup module, art0.S, which contains the entry point

• The function main, which calls any Ada elaboration routines then
calls the Ada main procedure

• The Ada program comprising the Ada main procedure and any library
packages in the link closure of the main program

• Library routines as required to support the generated code (64-bit
shifts for example)

The ANSI C libraries libc and libm may also be used via import pragmas.

3.11. Section 11: Exceptions

Exceptions may be declared and raised as described in the Ada 95
standard. However exception handlers can only handle exceptions raised
locally. The propagation of exceptions is not supported.

The predefined exceptions Program_Error, Numeric_Error and
Constraint_Error are raised under the conditions given in the Ada 95
Standard.

16

Chapter 3. Language-Related Issues

The predefined exception Storage_Error is raised by an explicit raise
statement, or when entering a subprogram, or when allocating the stack
space for a data object or task declaration. The additional code for these
checks is generated by default.

3.12. Section 12: Generic Units

Generic Units are supported as defined in the Ada 95 Reference Manual.

3.13. Section 13: Representation Issues

M1750 Ada supports all of the implementation-dependent features of
Ada 95 Reference Manual Section 13 that have a useful meaning in an
embedded system.

In particular:

• The pragma Pack is supported.

• Length clauses are supported, including the following:

• Size specification for types

• Small specification for fixed point types, using arbitrary values

• Storage_Size specification for tasks

• Enumeration representation clauses are supported.

• Record representation clauses are supported.

• Alignment clauses are supported (up to the maximum data object
size).

• Address clauses are supported for constants and variables.

• The pragma Interface is supported.

• Unchecked programming is supported.

• The predefined package Machine_Code is supported.

The following are not supported:

• interrupt entries for tasks

17

3.12. Section 12: Generic Units

• address clauses for subprograms, packages or tasks

• the predefined packages Ada.Unchecked_Deallocation and
Unchecked_Deallocation

• the predefined package System.Storage_Pools

• the predefined package Ada.Streams

3.13.1. Definitions from the predefined package System

Table 3.4, “Named Numbers from package System” [18] specifies values
from the predefined package System.

Table 3.4. Named Numbers from package System

ValueNamed Number

-263Min_Int

263 - 1Max_Int

264Max_Binary_Modulus

32767Max_Nonbinary_Modulus

9Max_Base_Digits

9Max_Digits

63Max_Mantissa

2.0-63Fine_Delta

1.0 MicrosecondsTick

3.13.2. The type Address

The predefined type Address is 16 bits in size, and the unit of storage
addressed is an 16-bit word. The value of the null address is zero. The
type Address is declared in the visible part of package System, so that
address expressions may contain numeric literals. M1750 Ada also
declares the type Code_Address which is always 32 bits in size. This is
used for the address of instructions.

18

Chapter 3. Language-Related Issues

3.14. Input-Output

The packages Ada.Text_IO, Ada.Sequential_IO and Ada.Direct_IO
require support from the system call interface. When running on the target
simulator, the system call interface is supported using the host operating
system, and, for example, a call to open a file will open a host file. When
the application is running on the target computer, a system call handler
may be supplied that supports the calls with an IO system. An example
of such a handler is included in the run-time system.

The package Ada.Storage_IO is supported as described in the Ada 95
Reference Manual.

3.15. Annex A: Predefined Language Environment

The following predefined library units are provided.

• package Ada

• Ada.Asynchronous_Task_Control

• Ada.Calendar

• Ada.Characters

• Ada.Characters.Handling

• Ada.Characters.Latin_1

• Ada.Characters.Wide_Latin_1

• Ada.Decimal

• Ada.Direct_IO

• Ada.Dynamic_Priorities

• Ada.Exceptions

• Ada.Exceptions.Handlers

• Ada.Integer_Text_IO

• Ada.Interrupts

19

3.14. Input-Output

• Ada.Interrupts.Names

• Ada.Interrupts.Unprotected_Handlers

• Ada.IO_Exceptions

• Ada.Long_Integer_Text_IO

• Ada.Long_Long_Integer_Text_IO

• Ada.Numerics (not all child packages are supported)

• Ada.Periodic_Tasks

• Ada.Real_Time

• Ada.Sequential_IO

• Ada.Short_Integer_Text_IO

• Ada.Storage_IO

• Ada.Strings (not all child packages are supported)

• Ada.Synchronous_Task_Control

• Ada.Task_Deadlines

• Ada.Task_Identification

• Ada.Text_IO

• Ada.Text_IO.Enumeration_IO

• Ada.Text_IO.Fixed_IO

• Ada.Text_IO.Float_IO

• Ada.Text_IO.Integer_IO

• Ada.Text_IO.Modular_IO

• package IO_Exceptions

• package Interfaces (not all child packages are supported)

• package Machine_Code

• package System

20

Chapter 3. Language-Related Issues

• package System.Address_to_Access_Conversions

• package System.Machine_Code

• package System.Storage_Elements

• function Unchecked_Conversion

3.16. Annex B: Interface to Other Languages

Annex B is partially supported. In particular, the predefined package
Interfaces is supported.

The following list gives language features that are not available:

Reason for restrictionFeature

Not ApplicableInterfaces.COBOL

Not ApplicableInterfaces.FORTRAN

3.17. Annex C: Systems Programming

Annex C is supported as follows.

C1. Access to Machine Operations
Section C1 is fully supported.

C2. Required Representation Support
Section C2 is fully supported.

C3. Interrupt Support
Interrupts are fully supported. In particular, the package
Ada.Interrupts.Names is customized for the target computer.

C4. Preelaboration Requirements
Section C4 is fully supported.

C5. Pragma Discard_Names
Section C5 is fully supported.

C6. Shared Variable Control
Section C6 is fully supported.

21

3.16. Annex B: Interface to Other Languages

C7. Task Identification and Attributes
Section C7 is not fully supported because of the restrictions on
tasking.

3.18. Annex D: Real-Time Systems

Annex D is mostly supported and meets the requirements of the several
profiles.

However, the restrictions defined here and in Annex H are supported, and
used as defaults, as described in Appendix B, Restrictions and
Profiles [57].

D1. Task Priorities
Section D1 is fully supported with subtype Priority having a range
from 0 .. 127, and subtype Interrupt_Priority having a range from
128 .. 255.

D2. Priority Scheduling
Section D2 is fully supported with the task dispatching policy
FIFO_Within_Priorities.

D3. Priority Ceiling Locking
Section D3 is fully supported with Ceiling_Locking.

D4. Entry Queuing Policies
For protected types, section D4 is restricted so that the maximum
queue length is one.

For tasks, the policies FIFO_Queuing and Priority_Queuing are
supported.

D5. Dynamic Priorities
The features of Section D5 are supported by default and may be
prohibited by the use of appropriate restrictions or profiles.

D6. Preemptive Abort
The features of Section D6 are prohibited.

D7. Tasking Restrictions
Section D7 is fully supported, and includes new restrictions.

D8. Monotonic Time
Section D8 is fully supported.

22

Chapter 3. Language-Related Issues

D9. Delay Accuracy
Section D9 is fully supported.

D10. Synchronous Task Control
Section D10 is fully supported.

D11. Asynchronous Task Control
The features of Section D11 are supported by default and may be
prohibited by the use of appropriate restrictions or profiles.

D12. Other Optimizations
The requirements of Section 12 are met.

3.19. Annex E: Distributed Systems

Only a single partition is available.

3.20. Annex F: Information Systems

Annex F is not supported.

3.21. Annex G: Numerics

Annex G (complex numeric types) is not supported.

3.22. Annex H: Safety and Security

The restrictions defined here and in Annex D are supported, and used as
defaults, as described in Appendix B, Restrictions and Profiles [57].

The Ravenscar profile requires several new restrictions, which are also
supported.

3.23. Annex J: Obsolescent Features

This Annex is almost completely supported. The only missing language
feature is the predefined package Unchecked_Deallocation, which cannot
be supported because the run-time system has no means of freeing
allocated memory.

23

3.19. Annex E: Distributed Systems

3.24. Annex K: Language-Defined Attributes

Annex K is partially supported. See discussion in other sections.

3.25. Annex L: Language-Defined Pragmas

The language-defined pragmas in Annex L are fully supported.

24

Chapter 3. Language-Related Issues

User Interface and
Debugging Facilities

Chapter 4

This chapter summarizes how to use the cross compiler. The management
of compilation, cross-development and debugging are described briefly.

4.1. Compiler Invocation

M1750 Ada uses the UNIX shell command line interface. The compiler,
the tools and the libraries are systematically named, and installed in a
formal directory structure. This permits different versions of M1750 Ada
to be installed and used at the same time, without confusion over which
files belong to which version. For the compiler, the convention is this.
The native compiler is called gcc, and is located in the directory /usr/bin,
or in /usr/local/bin. Cross compilers have a different name, and are
installed under /opt/m1750-ada-1.7/, for example, with the executable
images in the directory /opt/m1750-ada-1.7/bin/.

The main program of the M1750 Ada compiler is called m1750-coff-gcc
and is located in the directory /opt/m1750-ada-1.7/bin/. Depending
on which source files and command line options are given, the main
program calls the Ada compiler, C compiler, assembler, or linker.

25

The other executable images are named in the same way. For example,
the native assembler is called as; the cross assembler is called
m1750-coff-as.

4.2. Compilation

For Ada 83 and Ada 95 the predefined program library is located in a
standard place, which is target dependent. The location is
/opt/m1750-ada-1.7/lib/gcc-lib/m1750-coff/2.8.1/adalib/.

Ada source files are always compiled in the context of a program library.
While M1750 Ada does not have a closed library as some other Ada
compilers do, it does generate and use library file information. By default
this goes in the current directory. Library files use the .ali (Ada library)
suffix. Also M1750 Ada requires each Ada compilation unit to be in a
separate file with the file name the same as the unit name. There must be
a file extension which is .ads for a package or subprogram specification
and .adb for a body.

Where a source file contains more than one compilation unit, then the
program m1750-coff-gnatchop may be used to divide the file. This
program writes the output files in the current directory, or (more usefully)
into a named directory.

For example:

bash$ m1750-coff-gnatchop big-file.ada src

4.2.1. Format and Content of User Listings

The compiler accepts several command line options to control the format
of listings. By default, no listing is generated at all.

-gnatl
Output full source listing with embedded error messages.

-gnatv
Verbose mode. Full error output with source lines to stdout.

-gnatk
Keep going despite syntax errors.

26

Chapter 4. User Interface and Debugging Facilities

bash$ m1750-coff-gcc -gnatlqv ackermann.adb
XGC Ada m1750-ada/-1.7/
Copyright 1992-2002 Free Software Foundation, Inc.

Compiling: ackermann.adb (source file time stamp: 2001-04-25 16:57:54)

 1. function Ackermann (m, n : Integer) return Integer is
 2. begin
 3. if m = 0 then
 4. return n + 1;
 5. elsif n = 0 then
 6. return Ackermann (m - 1, 1);
 7. else
 8. return Ackermann (m - 1, Ackermann (m, n - 1));
 9. end if;
 10. end Ackermann;
 11.

 11 lines: No errors

The assembler can also generate a listing, as follows:

$ m1750-coff-gcc -Wa,-a -c ackermann.adb
 1 .file "ackermann.adb"
 2 gcc2_compiled.:
 3 __gnu_compiled_ada:
 4 .text
 5 .global _ada_ackermann
 6 _ada_ackermann:
 7 0000 B2F0 sisp r15,1
 8 0002 9FEE pshm r14,r14
 9 0004 81EF lr r14,r15
 10 0006 8120 lr r2,r0
 11 0008 8101 lr r0,r1
 12 .L5:
 13 000a 8122 lr r2,r2
 14 000c 7A03 jnz .L2
 15 000e A200 aisp r0,1
 16 0010 7411 j .L6
lots of output...

27

4.2.1. Format and Content of User Listings

The objdump program can also generate a listing by disassembling the
object code.

$ m1750-coff-objdump -d ackermann.o
ackermann.o: file format coff-m1750

Disassembly of section .text:

00000000 <_ada_ackermann>:
 0: b2 f0 sisp r15,1
 2: 9f ee pshm r14,r14
 4: 81 ef lr r14,r15
 6: 81 20 lr r2,r0
 8: 81 01 lr r0,r1

0000000a <.L5>:
 a: 81 22 lr r2,r2
 c: 7a 03 bnz 3
 e: a2 00 aisp r0,1
 10: 74 11 br 17
lots of output...

4.3. Errors and Warnings

No object code is generated for units that contain errors.

There are three levels of messages:

• Fatal errors, where the compiler is unable to continue

• Errors, which explain the nature of the error

• Warnings, which are less severe than errors, and which do not prevent
code generation

If the listing option is set, then the messages will be correctly placed in
the listing, with a pointer to the lexical token relating to the message.

4.4. Other Software Supplied

M1750 Ada includes a number of other tools to support software
development, as follows:

28

Chapter 4. User Interface and Debugging Facilities

m1750-coff-addr2line
which converts given target addresses to source file line numbers

m1750-coff-ar
which is used to build object code libraries

m1750-coff-gdb
which is the symbolic debugger

m1750-coff-gnatchop
which may be used to divide a file that contains more than one
compilation unit into one file for each unit

m1750-coff-gnatfind
which is used to find Ada symbols in source files

m1750-coff-gnatls
which is used to list Ada units

m1750-coff-gnatmake
which uses the Ada rules to automatically compile, recompile and
build an Ada program

m1750-coff-gnatprep
which is an Ada pre-processor

m1750-coff-gnatpsta
which prints the target package Standard

m1750-coff-gnatpsys
which prints the target package System

m1750-coff-gnatxref
which is the Ada cross reference tool

m1750-coff-nm
which lists the symbols from object files

m1750-coff-objcopy
which is used to copy and reformat object code files

m1750-coff-objdump
which is used to dump information from object code files and includes
an option to disassemble

29

4.4. Other Software Supplied

m1750-coff-ranlib
which generates an index to the contents of an archive and stores it
in the archive

m1750-coff-run
which is the simulator

m1750-coff-sim
which is an interactive simulator

m1750-coff-size
which prints the size of an object code or executable file

m1750-coff-strings
which lists debug symbols and other strings in an object code file

m1750-coff-strip
which removes debug symbol table information from object code
files

4.5. Debugging Facilities

The GNU debugger, gdb, as customized for M1750 Ada, offers many
features for debugging both at the high-level language level and with
machine code.

Using the host-target link and the XGC monitor, the debugger can debug
programs running on a remote target.

M1750 Ada includes a target simulator that accurately simulates the target
instruction set and timing. The simulator includes the following features:

• Simulates the entire M1750 Microprocessor instruction set

• Simulates instruction timing, including wait states

• Prints statistics giving execution time, number of instructions in each
class, number of nullified instructions

• Prints task state information

• Prints test coverage information, either for the whole program or for
a given source file

• Supports system calls

30

Chapter 4. User Interface and Debugging Facilities

Performance and
Capacity

Chapter 5

This chapter describes host performance and capacity, and target code
performance of M1750 Ada.

5.1. Host Performance and Capacity

The compile time performance of M1750 Ada is generally very good.
For example, one application, which consists of 20,000 lines of Ada 95,
compiles in 16 seconds of CPU time, on a 133MHz Pentium UNIX system.
That is a rate of 60,000 lines per minute. These times are for compilations
using the highest optimization level.

Ada package specifications, which typically involve very little generated
code, compile very quickly. On the other hand, extensive use of generic
instantiations or in-line expansion, which can result in large amounts of
generated code, can greatly reduce the line-per-minute rate.

Because of the overhead of loading the compiler, the line-per-minute rate
is bigger for a large compilation unit than for a small one. Also once the
compiler is loaded, further compilations proceed a lot faster.

31

The Ada compiler builds a compact tree structure in memory for each
compilation unit. Clearly the size of the tree depends on the size of the
unit, but experience suggests that a UNIX system with 16M bytes of real
memory is more than adequate for typical program development, even
where X-Windows and Motif are used. However where very large Ada
units are to be compiled, 24M bytes of memory is a better size, and 32M
bytes should be sufficient for even the largest compilations. No use is
made of any previous compilation of the same unit to increase compilation
speed.

5.2. Target Code Performance

The target code performance of M1750 Ada is generally very good. The
compiler generates code that compares well with other compilers, and
which the assembly language programmer would find difficult to beat.
See the examples of generated code in Appendix A, Examples of
Generated Code [51].

The results of running the three benchmark programs Sieve, Ackermann
and Whetstone are given in Table 5.1, “Benchmark Results” [32]. These
programs were run on the simulator, with a 10 MHz generic 1750A. 1

Table 5.1. Benchmark Results

Expanded memoryBasic memoryBenchmark

1913 mSec948 mSecAckermann

483 mSec483 mSecSieve

2064 KWIPS2862 KWIPSWhetstone

Table 5.2, “Task-Related Metrics” [33] gives timings for several
task-related features. The clock frequency is 10 MHz.

1The generic 1750A runs with one clock cycle per instruction plus one clock cycle per memory access.

32

Chapter 5. Performance and Capacity

Table 5.2. Task-Related Metrics

Time in Microseconds at
10 MHz

Clock
Cycles

Metric

1501500Interrupt latency (C.3.1 (15))

1501500From call of trivial protected procedure
to return from entry

17170Call of Clock (D.8 (44))

2002000Lateness of a delay (D.9 (13))

80800Suspend_Until_True, where state is
already True

1901900Set_True to return from
Suspend_Until_True

82820Trivial protected procedure call (D.12 (6))

5.2.1. Optimization and Code Quality

M1750 Ada uses many traditional optimizations to improve the size and
execution speed of the generated code. The following list includes some
of the optimizations.

• Sub-expression commoning

• Loop unrolling

• Loop variable induction

• Strength reduction

• Constraint check elimination

• Loop invariant hoisting

• Load and store elimination

• Register allocation

• Unreachable code elimination

• Tail recursion optimization

The overall level of optimization is controlled by the -O option. The
default is optimization level 2. Also many of the optimizations are tied

33

5.2.1. Optimization and Code Quality

to a further compile-time option and can be enabled or disabled as
necessary.

5.2.2. Constraint Checks

In general, constraint checks are eliminated wherever possible, and
constraint check expressions are subject to all the usual optimizations.

Most redundant checks are eliminated. In the example that follows,
constraint checks such as those at (1), (2) and (3) are generally eliminated.

I : Integer range -2 .. 2;
J : Integer range 0 .. 10;

type BT is access T;
V : BT;

I := 22 mod 3; -- (1) no checks needed at run time
I := J; -- (2) check on top limit only
V := new T (...);
if V.L = ... then -- (3) no null access check
 -- (4) current variant is correct

In the example shown, the run-time checks performed are as follows:

• A check on the top limit only is performed for (2).

• A discriminant check is performed for (4).

5.2.3. Space for Unused Variables

No space is allocated for scalar variables that are unused. Space for arrays
and records is always allocated.

5.2.4. Space for Unused Subprograms

Subprograms that are declared in a package but unused in a program are
always loaded if the package is loaded.

34

Chapter 5. Performance and Capacity

5.2.5. Evaluation of Static Expressions

Static expressions are always evaluated according to the rules of the
Ada 95 Reference Manual Section 4.8. Other compile-time-constant
expressions may be evaluated at compile time too.

5.2.6. Elimination of Unreachable Code

In most cases code that is unreachable is eliminated.

5.2.7. Common Sub-expressions

In the following code example, the address of the element of the array is
computed once.

A(I) := A(I) + 1;

5.2.8. Loop Invariants

In the following Matrix code, the address of the element A(I, J) is
computed for the first iteration, then for subsequent iterations the address
is incremented by the size of the element.

for I in 1 .. N loop
for J in 1 .. M loop

 A (I, J) ...
end loop;

end loop;

5.2.9. Bound Checks

In general, redundant array bounds checks are eliminated.

35

5.2.5. Evaluation of Static Expressions

5.2.10. The pragma Inline

The pragma Inline is supported, except where the subroutine mentioned
in the pragma is ineligible. Inlining across compilation units may be
disabled using a compile-time option.

5.2.11. Procedure Calling Overhead

As an example of the subprogram calling overhead, the code sizes for
Ackermann's function are as follows:

• Total code size for Ackermann's function = 60 bytes

• Instructions executed per call = 14

Stack overflow checking adds 7 instructions to the size of the generated
code.

5.2.12. The Rendezvous

In a rendezvous, the accept statement body is executed by the owning
task, never by the calling task. No tasking optimizations are performed
but the special case of a null accept statement is handled separately.

5.2.13. Space Requirements

For a task 74 bytes are allocated for the task control block. In addition,
there are 6 bytes for each task entry. The stack size is either the default
size of 1024 bytes, or the value given in the task type's length clause.

The space overhead for a protected object is 14 bytes.

The size of a null program is approximately 1548 bytes. The size of a
minimal program that uses tasking (tasks, protected objects and delay
statements) is approximately 4K bytes. These sizes include code, read-only
data and variables, but exclude stack space.

36

Chapter 5. Performance and Capacity

Cross-Compiler and
Run-Time Interfacing

Chapter 6

The internal structure of the M1750 Ada cross-compiler and run-time
system are described in this chapter.

6.1. Cross-Compiler Issues

The following sections describe the design of the native and cross
compilers in general, and provide a more detailed description of the
M1750 Ada compiler.

6.1.1. Background

The M1750 Ada compiler is based on the GNAT compiler from New
York University. This compiler was developed with funding from the
United States Department of Defense to be the compiler promised in the
Ada requirements document known as Steelman.

GNAT consists of an Ada 95 front end, a code generator, and a middle
phase that translates the Ada program into the intermediate language used
by the code generator. The code generator is taken from GCC—the GNU

37

C Compiler, as are the other tools required to complete the compilation
system.

The Free Software Foundation designed GCC to be the compiler of the
GNU UNIX-like operating system, and was required to support the ANSI
C programming language and work with other UNIX tools. It was also
required to generate high-quality code for any computer that could be
expected to run UNIX.

These requirements led to the implementation of a compiler that became
an obvious base for other programming languages, and today GCC
supports C++, Objective C, Pascal, Modula-3, FORTRAN, and Ada.

GCC has also been developed to meet the needs of embedded system
programmers, and can be configured as a cross compiler using a minimal
run-time system. The GNAT Ada front end is the most complete
implementation of the Ada 95 language available. Most of the optional
features are supported, including the distributed systems Annex and the
safety-critical Annex.

6.2. Compiler Phase and Pass Structure

The compiler, the assembler and the linker are three separate programs,
but are normally run under the control of a small driver program, gcc.
Given compile-time options, and a source file, gcc uses a target-dependent
specification file to determine which passes are required. These are then
run using UNIX pipes or temporary files to pass data between the separate
programs. Many of the defaults can be overridden with compile-time
options.

The default for the gcc command is to use the latest version of the native
compiler. For the M1750 Ada compiler a further driver program is
supplied. This is called m1750-coff-gcc and runs the compiler, assembler
and linker targeted to the M1750 Microprocessor rather than the native
ones. Either driver can run an earlier version of the compiler, if installed.

The compiler has a language-dependent front end, which builds internal
representation of the program being compiled, then calls the
target-dependent code generator to generate assembly language. The
M1750 Ada compiler includes front end for ANSI C as well as Ada 95.

The Ada front-end comprises four phases, which communicate by means
of a compact Abstract Syntax Tree (AST). The implementation details of
the AST are hidden by several procedural interfaces that provide access

38

Chapter 6. Cross-Compiler and Run-Time Interfacing

to syntactic and semantic attributes. The layering of the system, and the
various levels of abstraction, are the obvious benefits of writing in Ada,
in what one might call “proper” Ada style.

The back end generates code for the M1750 Microprocessor and includes
phases to handle optimizations, register allocation and code generation.
The code generator uses a pattern matching technique to ensure good use
of the target computer's instruction set.

6.3. Compiler Module Structure

6.3.1. Intermediate Program Representations

The compiler generates assembly language, which is automatically passed
to the assembler. The assembler generates object code, and several
different object code formats are supported. The utility program objcopy
may be used to change the format among any of those supported.

6.3.2. Final Program Representation

The final program representation is one of a number of industry-standard
formats, including but not limited to the following:

• COFF (default)

• Motorola S-Records

• Intel Hex

• Tek Hex

The default format is COFF, which can include symbolic information to
help with debugging. When COFF files are converted into the other
formats, some or all of the debugging information is lost.

6.3.3. Compiler Interfaces to Other Tools

M1750 Ada provides information for other tools—notably the GNU
debugger GDB and the GNU profiler GPROF. GPROF is not included
with M1750 Ada, but may be used with the native GNAT compiler to
provide a useful analysis of software that is intended to be run on the

39

6.3. Compiler Module Structure

target microprocessor. M1750 Ada can also provide information for future
program analysis tools. This is done by an implementation-defined pragma
that allows the programmer to annotate the Ada source with arbitrary
comments that are preserved in the internal data structures.

6.4. Compiler Construction Tools

Technically, the crucial asset of the GCC is its mostly
language-independent, target-independent code generator. It produces
code of excellent quality both for CISC machines such as the Intel and
Motorola families, as well as RISC machines such as the IBM RS/6000.
The machine dependencies of the code generator represent less than 10
per cent of the total code.

To add a new target to GCC, an algebraic description of each machine
instruction must be given using a register-transfer language. Most of the
code generation and optimization then uses the RTL, which GCC maps
when needed into the target machine language. Furthermore, GCC
produces high-quality code, comparable to that of the best compilers.

6.5. Installation

M1750 Ada is shipped on CD-ROM. As with most UNIX software,
installation is simple. For Solaris, M1750 Ada is shipped as a Solaris
package that is installed using the Solaris pkgadd command. For Linux
M1750 Ada is supplied as one or more compressed tar format files. To
install, enter the appropriate tar command then follow the enclosed
installation instructions. Note that installation requires access to directories
that may be under the control of the system administrator.

6.6. Run-Time System Issues

M1750 Ada includes a run-time system that supports C and Ada. This
includes the basic functions that are common to both languages, such as
program startup, exception management and low-level input/output. In
addition, each language is supported by a number of standard libraries,
as required by the language definition.

40

Chapter 6. Cross-Compiler and Run-Time Interfacing

6.6.1. The Stack

The Ada main program is given a stack, where the location and size are
determined by the linker script file. The stack is used to support
subprogram calls, and typically contains a linked sequence of stack frames
that contain saved registers and subprogram data.

Each task has a stack that is allocated at elaboration time from the free
memory declared in the linker script file. If insufficient free memory is
available, then the predefined exception Storage_Error is raised.

Interrupt handlers use a separate stack also declared in the linker script
file.

6.6.2. Subprogram Call and Parameter Handling

The subprogram calling convention is common to both supported
languages, which makes it possible to build programs using a mixture of
Ada and C.

Register saving. M1750 Ada uses the caller-save convention for saving
registers across subprogram calls. This convention has the advantage that
the register allocator can take the call into account and reduce the number
of registers to be saved.

Parameter passing. Up to 12 words of parameters are passed in
registers R0 to R11. Any further parameters are passed on the stack. For
a function, or a procedure with a single out parameter, the result is passed
out in register R0.

The call instruction. M1750 Ada uses the SJS instruction to call a
subprogram. The link is passed on the stack.

Subprogram entry. For subprogram entry, the compiler generates
code to establish a new stack frame. This may include code to check for
stack overflow. The compiler is able to recognize several special cases
where the worst-case code can be improved. In particular, for “leaf”
subprograms that have no need for stack frame data, the stack frame is
completely eliminated and the code to set up the frame, and remove it on
exit, is not generated.

Subprogram exit. For subprogram exit, the compiler generates code
to remove the current stack frame, and return to the calling subprogram.

41

6.6.1. The Stack

The return value. Function values are returned in a register if possible.
If not then the calling subprogram allocates space in its stack frame then
passes the address of the space to the called subprogram, which copies
the function value to that address.

6.6.3. Data Representation

The following table shows the number of bits in the data representation
for the M1750 Microprocessor.

M1750 MicroprocessorType

16, 32 and 64 signedInteger

16, 32 and 64 unsignedModular

16, 32 and 64 signedFixed

32 and 48Floating Point

16 and 32Enumeration

Storage allocation for array types is simply the number of components
multiplied by the allocation for each component. Components can be
packed and bit aligned in some cases. Unconstrained arrays have a
descriptor with lower and upper bounds for each index. Note that
dynamically unconstrained arrays are prohibited.

Storage allocation for record types is the sum of the individual component
allocations, which are byte aligned by default. Components can be packed
and bit aligned in some cases.

The pragma Pack causes pack-able array and record components to be
allocated in adjacent bits without regard to byte boundaries.

6.6.4. Implementation of Ada Tasking

M1750 Ada supports a limited form of Ada tasking that permits static
tasks, protected types and a limited form of rendezvous. The features
supported may be further restricted by use of individual restrictions, or
by the pragma Profile.

The general strategy is for the compiler to translate Ada tasking operations
into run-time system calls, using data types from the predefined package
XGC.Tasking.

42

Chapter 6. Cross-Compiler and Run-Time Interfacing

Some language features (delays for example) are supported by child
subprograms.

In addition the package XGC.Preemption_Control is required to give the
run-time system exclusive access to the tasking data structures.

The above packages are only included in an application program if the
corresponding language features are used. A null program is linked with
only the minimal run-time system module art0.S.

6.7. Exception Handling System

M1750 Ada supports exception declarations, the raise statement, and
exception handlers. It does not support exception propagation. We expect
M1750 Ada application programs to regard an exception as a fatal error,
and to log the context of the failure (in non-volatile RAM for example),
then to restart the program.

There is no overhead associated with calling or entering a subprogram in
which an exception is declared, other than the space required to hold the
exception descriptor. This a small record that contains the name of the
exception (as a string), and several other items required to satisfy the
needs of the predefined package Ada.Exceptions.

An exception may also be raised by a call of
Ada.Exceptions.Raise_Exception. The advantage of making the call
rather than using the raise statement is that the call may attach a message
to the exception.

Unhandled exceptions, hardware faults and deadline errors are reported
within the run-time system, and can be handled as interrupts. The default
action is to log the fault (via application-dependent code), then do a warm
restart.

6.8. I/O Interfaces

The predefined library packages Text_IO and Ada.Text_IO are partially
supported so that test programs can write their results to an output stream.
These packages, Direct_IO and Sequential_IO all require system calls to
be supported on the target.

For application program input and output, it is necessary to use low-level
features such as representation clauses and package Machine_Code.

43

6.7. Exception Handling System

6.9. Documentation

M1750 Ada includes comprehensive electronic documentation for the
compiler, the tools, and the Ada programming language.

44

Chapter 6. Cross-Compiler and Run-Time Interfacing

Re-targeting and
Re-hosting

Chapter 7

M1750 Ada is shipped in binary format and source format. The binary
version is created for a specific host computer (for example a Sun SPARC
running Solaris 2.6) and for a specific target computer (the
M1750 Microprocessor) and only runs on that host for that target.

The source version consists of the standard GCC distribution, with the
new code generator, assembler, disassembler etc., the GNAT distribution,
and run-time software written for M1750 Ada.

7.1. Retargeting

M1750 Ada is a customization of the GCC compiler, which can be easily
re-targeted to any modern computer. Many targets are already supported
by the standard GCC distribution, which should be checked before
considering retargeting work.

Re-targeting requires considerable compiler expertise, appropriate host
and target hardware, and a suitable compiler development system.

45

7.2. Rehosting

The preferred host operating system is UNIX. This is because UNIX
includes as standard, many of the utility programs that are required to
make and install M1750 Ada, and which are useful to operate M1750 Ada.
However M1750 Ada may also be re-hosted (with reduced functionality)
any version of Microsoft Windows that supports 32-bit programs.

7.2.1. Availability of Source Code

The complete source code for M1750 Ada is provided as standard.

7.2.2. Source Language

The Ada front end and the Ada predefined library are written in Ada 95.
The C compiler (which is always included), the object code utilities, the
debugger and the C libraries are written in ANSI C. The run-time start
file, art0.S, is written in assembly language. Other standard UNIX
languages (such as YACC and Perl) are used in the construction of the
compiler.

7.2.3. System Dependencies

M1750 Ada is designed to operate in a UNIX environment. This is not
necessarily a UNIX system, but one that provides a POSIX compliant
programming interface. Platforms such as Microsoft Windows may also
be used but with reduced functionality.

46

Chapter 7. Re-targeting and Re-hosting

Contractual MattersChapter 8

M1750 Ada is copyrighted commercial non-proprietary software.

The M1750 Ada compiler and associated toolset are based on software
from the Free Software Foundation, Cambridge, MA, and are supplied
under their license. The M1750 Ada run-time system and libraries are
supplied under a special library license.

8.1. The Compiler License

M1750 Ada 95 compiler is supplied under the General Public License,
which is included on the CD-ROM.

This license requires us to make the source code available so that users
are not prohibited from making further modifications.

Ready-to-install binary versions of the compiler, that have been thoroughly
tested, are available for a fee.

The terms and conditions of the license permit you to copy the source or
the binary versions, and to pass these to a third party, providing you do

47

this on the same terms an condition under which the source or binary
versions were supplied to you.

8.2. The Run-Time License

The run-time system and other run-time code are supplied on a license
that follows the General Public License, but which explicitly allows you
to use the source or object code in your application software without any
of the GPL terms and conditions flowing down.

As a special exception, if other files instantiate generics
from this unit, or you link this unit with other files to
produce an executable, this unit does not by itself cause
the resulting executable to be covered by the GNU
General Public License. This exception does not
however invalidate any other reasons why the
executable file might be covered by the GNU Public
License.

The run-time license is supplied free of charge, and there are no recurring
costs associated with using the run-time system.

8.3. Support

The medium on which M1750 Ada is shipped, and the printed
documentation, are warranted for six months from the time of shipment.
They will be replaced free of charge if defective in any way.

The software is supplied with six months warranty, which may be extended
for additional periods of 12 months, and applies to one project. The service
offered includes regular product updates, advice on working around
problems and general assistance with using the toolset or run-time system.

The warranty does not include training or customization. These are
available for an additional fee.

48

Chapter 8. Contractual Matters

ValidationChapter 9

We regularly test the XGC compilers against the ACVC test suite, and
against its successor, the ACATS tests. While both of these are intended
for compilers that have no built-in restrictions, they offer good coverage
of the Verison 1.7 compilers.

We have identified 3487 tests from ACATS Version 2.5 that are applicable
to restricted compilers. Table 9.1, “The Validation Test Classes” [50]
lists the number of tests in each section, and how many of those tests the
compiler passes.

49

Table 9.1. The Validation Test Classes

Number of
Passes

Number of
Applicable

Tests

Number of
Tests

DescriptionGroup

616175Class A tests check for acceptance
(compilation) of language constructs that
are expected to compile without error.

A

151015101510Class B tests check that illegal constructs
are recognized and treated as fatal errors.

B a

1562b18352307Class C tests check that executable
constructs are implemented correctly and
produce expected results.

C

444Class D tests check that implementations
perform exact arithmetic on large literal
numbers.

D

6932Class E tests check for constructs that may
require inspection to verify.

E

686889Class L tests check that all library unit
dependencies within a program are satisfied
before the program can be bound and
executed, that circularity among units is
detected, or that pragmas that apply to an
entire partition are correctly processed.

L c

aB tests are expected to fail with compilation time errors. Ones that are not applicable due to restrictions may therefore fail for
different reasons from the original intention of the test, but nevertheless fail to compile and are therefore treated as passes.
bIn group C, 303 tests did not print PASSED but terminated with an unhandled exception. In all 303 cases the exception was
correctly raised then not handled because of the restriction on exception propagation.
cL tests are expected to give errors at compile time, bind time or link time and not to run.

50

Chapter 9. Validation

Examples of Generated
Code

Appendix A

In this chapter we present examples of code generated by the Version 1.7
compiler.

A.1. The Sieve of Eratosthenes

Compiler writers use the Sieve of Eratosthenes benchmark to check code
quality and to compare run-time performance among compilers, languages
and computers.

The benchmark uses the sieve method to compute the number of odd
primes between 3 and 16383.

51

Example A.1. Source Code for Sieve

procedure Sieve_Benchmark (Result : out Integer) is
 Size : constant := 8190;
 k, Prime : Natural;
 Count : Integer;

 type Ftype is array (0 .. Size) of Boolean;
 Flags : Ftype;
begin
 for Iter in 1 .. 10 loop
 Count := 0;

 for i in 0 .. Size loop
 Flags (i) := True;
 end loop;

 for i in 0 .. Size loop
 if Flags (i) then
 Prime := i + i + 3;
 k := i + Prime;
 while k <= Size loop
 Flags (k) := False;
 k := k + Prime;
 end loop;
 Count := Count + 1;
 end if;
 end loop;
 end loop;

 Result := Count;
end Sieve_Benchmark;

The generated code is given in Example A.2, “Generated Code for
Sieve” [53]. The code was generated at optimization level 2 with checks
suppressed.

52

Appendix A. Examples of Generated Code

Example A.2. Generated Code for Sieve

 1 .file "sieve_benchmark.adb"
 2 gcc2_compiled.:
 3 __gnu_compiled_ada:
 4 .text
 5 .global _ada_sieve_benchmark
 6 _ada_sieve_benchmark:
 7 0000 4AF2 1FFF sim r15,8191
 8 0004 9FEE pshm r14,r14
 9 0006 81EF lr r14,r15
 10 0008 8260 lisp r6,1
 11 000a 814F lr r4,r15
 12 000c A146 ar r4,r6
 13 .L5:
 14 000e E555 xorr r5,r5
 15 0010 8514 1FFE lim r1,8190,r4
 16 0014 8104 lr r0,r4
 17 .L9:
 18 0016 9111 0000 stc 1,0,r1
 19 001a B210 sisp r1,1
 20 001c F110 cr r1,r0
 21 001e 7BFC jge .L9
 22 0020 E533 xorr r3,r3
 23 .L15:
 24 0022 8114 lr r1,r4
 25 0024 A113 ar r1,r3
 26 0026 8001 0000 l r0,0,r1
 27 002a 4A0A 0000 cim r0,0
 28 002e 750F jez .L14
 29 0030 8103 lr r0,r3
 30 0032 6000 sll r0,1
 31 0034 A202 aisp r0,3
 32 0036 8123 lr r2,r3
 33 0038 7405 j .L27
 34 .L19:
 35 003a 8114 lr r1,r4
 36 003c A112 ar r1,r2
 37 003e 9101 0000 stc 0,0,r1
 38 .L27:
 39 0042 A120 ar r2,r0
 40 0044 4A2A 1FFE cim r2,8190
 41 0048 78F9 jle .L19

53

A.1. The Sieve of Eratosthenes

 42 004a A250 aisp r5,1
 43 .L14:
 44 004c A230 aisp r3,1
 45 004e 4A3A 1FFE cim r3,8190
 46 0052 78E8 jle .L15
 47 0054 A260 aisp r6,1
 48 0056 F269 cisp r6,10
 49 0058 78DB jle .L5
 50 005a 8105 lr r0,r5
 51 005c 81FE lr r15,r14
 52 005e 8FEE popm r14,r14
 53 0060 4AF1 1FFF aim r15,8191
 54 0064 7FF0 urs r15

A.2. Ackermann's Function

Using an informal functional notation, Ackermann's function is defined
as follows:

A(0, n) = n+1
A(m, 0) = A(m-1, 1)
A(m, n) = A(m-1, A(m, n-1))

From the point of view of benchmarking, Ackermann's function is
interesting because it consists almost entirely of subprogram calls, and
nests the calls deeply if required. The number of calls and the degree of
nesting is controlled using the two arguments.

We use A(3,6) as the benchmark. This gives us 172233 calls, with a
nesting depth of 511.

54

Appendix A. Examples of Generated Code

Example A.3. Ada Source Code for Ackermann's Function

function Ackermann_Benchmark (M, N : in Integer) return Integer is
begin
 if M = 0 then
 return N + 1;
 elsif N = 0 then
 return Ackermann_Benchmark (M - 1, 1);
 else
 return Ackermann_Benchmark (M - 1, Ackermann_Benchmark (M, N - 1));
 end if;
end Ackermann_Benchmark;

Ackermann's function provides two opportunities for tail recursion
optimization, both of which are taken here. The two parameters are passed
in register, and the calling procedure saves any live registers across a call.

The generated code is given in Example A.4, “Generated Code for
Ackermann's Function” [56]. For this version of the summary the code
was generated at optimization level 2 with all checks on. Recompiling
with checks off saves 14 bytes.

55

A.2. Ackermann's Function

Example A.4. Generated Code for Ackermann's Function

 1 .file "ackermann_benchmark.adb"
 2 gcc2_compiled.:
 3 __gnu_compiled_ada:
 4 .text
 5 .global _ada_ackermann_benchmark
 6 _ada_ackermann_benchmark:
 7 0000 B2F0 sisp r15,1
 8 0002 9FEE pshm r14,r14
 9 0004 81EF lr r14,r15
 10 0006 8120 lr r2,r0
 11 0008 8101 lr r0,r1
 12 000a 81BF lr r11,r15
 13 000c 4AB9 8000 xorm r11,0x8000
 14 0010 F0B0 0000 c r11,_stack_limit
 15 0014 7B02 bge .+4
 16 0016 7708 bex 8
 17 .L5:
 18 0018 4A2A 0000 cim r2,0
 19 001c 7A03 jnz .L2
 20 001e A200 aisp r0,1
 21 0020 7413 j .L6
 22 .L2:
 23 0022 4A0A 0000 cim r0,0
 24 0026 7A04 jnz .L4
 25 0028 B220 sisp r2,1
 26 002a 8200 lisp r0,1
 27 002c 74F6 j .L5
 28 .L4:
 29 002e 8532 FFFF lim r3,-1,r2
 30 0032 903E 0001 st r3,1,r14
 31 0036 8110 lr r1,r0
 32 0038 B210 sisp r1,1
 33 003a 8102 lr r0,r2
 34 003c 7EF0 0000 sjs r15,_ada_ackermann_benchmark
 35 0040 802E 0001 l r2,1,r14
 36 0044 74EA j .L5
 37 .L6:
 38 0046 81FE lr r15,r14
 39 0048 8FEE popm r14,r14
 40 004a A2F0 aisp r15,1
 41 004c 7FF0 urs r15

56

Appendix A. Examples of Generated Code

Restrictions and ProfilesAppendix B

This Appendix defines how the Ada 95 restrictions, accessible through
the pragma Restrictions, are supported. Unsafe features such as run-time
dispatching and heap management are not supported in the run-time
system, so all the restrictions that are relevant for these features are set
to True by default.

The following restrictions are built in. That is, they cannot be turned off
and are exploited by the compiler to offer better-quality generated code
than would otherwise be possible.

• No_Abort_Statements

• No_Dispatch

• No_Local_Protected_Objects

• No_Requeue

• No_Task_Attributes

• No_Task_Hierarchy

• No_Terminate_Alternatives

57

The implementation-defined pragma Profile may also be used to set and
unset restrictions that correspond to a certain application area. The profiles
supported are as follows:

Table B.1. Supported Profiles

DescriptionProfile Name

This is the default profile and offers the least restrictions.XGC

This allows a limited form of tasking that includes static
tasks, protected objects, the delay until statement and
interrupts.

Ravenscar

This severely restricts the use of non-deterministic
language features (including tasking) and is suitable for
general avionics applications.

Restricted_Run_Time

This profile prohibits all calls to the predefined Ada
library and is useful for safety-critical applications. Calls
to the compiler support library are not restricted.

No_Run_Time

Table B.2, “Profiles and Restrictions” [59] gives the individual restrictions
for each profile. Note that the built-in restrictions apply to all profiles.

58

Appendix B. Restrictions and Profiles

Table B.2. Profiles and Restrictions

Restricted_
Run_Time

RavenscarDefaultAda 95 Reference
Manual Section

Restriction

TrueTrueFalseXGC (Ravenscar)Boolean_Entry_Barriers

FalseFalseFalseRM H.4(10)Immediate_Reclamation

TrueTrueTrueRM D.7(5), H.4(3)No_Abort_Statements

TrueTrueFalseRM H.4(17)No_Access_Subprograms

TrueFalseFalseRM H.4(7)No_Allocators

TrueTrueFalseRM D.9(10)No_Asynchronous_Control

TrueTrueFalseXGCNo_Calendar

TrueFalseFalseRM H.4(21)No_Delay

TrueTrueTrueRM H.4(19)No_Dispatch

TrueTrueTrueXGCNo_Dynamic_Interrupts

TrueTrueFalseRM D.9(9)No_Dynamic_Priorities

TrueFalseFalseXGCNo_Elaboration_Code

TrueTrueFalseXGCNo_Entry_Calls_In_Elaboration_Code

TrueTrueTrueXGCNo_Entry_Queue

TrueFalseFalseXGCNo_Enumeration_Maps

TrueFalseFalseXGCNo_Exception_Handlers

FalseFalseFalseRM H.4(12)No_Exceptions

FalseFalseFalseRM H.4(15)No_Fixed_Point

FalseFalseFalseRM H.4(14)No_Floating_Point

TrueFalseFalseXGCNo_Implementation_Attributes

TrueFalseFalseXGCNo_Implementation_Pragmas

TrueFalseFalseXGCNo_Implementation_Restrictions

TrueFalseFalseXGCNo_Implicit_Conditionals

TrueTrueFalseRM D.8(8), H.4(3)No_Implicit_Heap_Allocations

FalseFalseFalseXGCNo_Implicit_Loops

TrueTrueFalseRM H.4(20)No_IO

TrueTrueFalseRM H.4(8)No_Local_Allocators

TrueTrueTrueXGCNo_Local_Protected_Objects

TrueTrueTrueRM D.7(4)No_Nested_Finalization

TrueTrueTrueXGCNo_Protected_Type_Allocators

59

Restricted_
Run_Time

RavenscarDefaultAda 95 Reference
Manual Section

Restriction

TrueFalseFalseRM H.4(5)No_Protected_Types

TrueTrueFalseRM H.4(22)No_Recursion

FalseFalseFalseRM H.4(23)No_Reentrancy

TrueTrueFalseXGCNo_Relative_Delay

TrueTrueTrueXGCNo_Requeue

TrueTrueFalseXGC (Ravenscar)No_Select_Statements

TrueTrueTrueXGCNo_Standard_Storage_Pools

TrueTrueTrueXGCNo_Streams

TrueTrueFalseRM D.7(7)No_Task_Allocators

TrueTrueTrueXGCNo_Task_Attributes

TrueTrueTrueRM D.7(3), H.4(3)No_Task_Hierarchy

TrueTrueTrueXGCNo_Task_Termination

TrueTrueTrueRM D.7(6)No_Terminate_Alternatives

TrueTrueFalseRM H.4(18)No_Unchecked_Access

TrueFalseFalseRM H.4(16)No_Unchecked_Conversion

TrueTrueTrueRM H.4(9)No_Unchecked_Deallocation

TrueTrueFalseXGCNo_Wide_Characters

TrueTrueFalseXGCStatic_Priorities

TrueTrueFalseXGCStatic_Storage_Size

Table B.3, “Profiles and Numerical Restrictions” [60] gives the restrictions
concerning numerical limits.

Table B.3. Profiles and Numerical Restrictions

Restricted_
Run_Time

RavenscarDefaultAda 95 Reference
Manual Section

Restriction

000RM D.7(18), H.4(2)Max_Asynchronous_Select_Nesting

111RM D.7(14)Max_Protected_Entries

00UndefinedRM D.7(12)Max_Select_Alternatives

000RM D.7(17)Max_Storage_At_Blocking

00UndefinedRM D.7(13), H.4(2)Max_Task_Entries

UndefinedUndefinedUndefinedRM D.7(19), H.4(2)Max_Tasks

111Ravenscar specificMax_Entry_Queue_Depth

60

Appendix B. Restrictions and Profiles

Violation of the restriction Max_Entry_Queue_Depth is detected at run
time and raises the predefined exception Program_Error.

61

62

The Predefined LibraryAppendix C

This appendix lists the units in the Ada 95 predefined library, and indicates
whether a unit is supported or not. The answer “Yes” means the unit is
supported in the default profile, and maybe in the other profiles. The
answer “Restricted...” means the unit is not supported in any profile
because of a built-in restriction.

63

Table C.1. Predefined Library Units

Supported?Unit Name

YesAda

YesAda.Asynchronous_Task_Control

YesabAda.Calendar

YesAda.Characters

YesAda.Characters.Handling

YesAda.Characters.Latin_1

YesAda.Characters.Wide_Latin_1

Not applicableAda.Command_Line

YesAda.Decimal

YesbAda.Direct_IO

YesAda.Dynamic_Priorities

YesAda.Exceptions

Restricted No_Implicit_Heap_AllocationsAda.Finalization

YesAda.Interrupts

YesAda.Interrupts.Names

YesAda.IO_Exceptions

YesAda.Numerics

YesAda.Numerics.Complex_Elementary_Functions

YesAda.Numerics.Complex_Types

Not applicableAda.Numerics.Discrete_Random

YesAda.Numerics.Elementary_Functions

Not applicableAda.Numerics.Float_Random

YesAda.Numerics.Generic_Complex_Elementary_Functions

YesAda.Numerics.Generic_Complex_Types

YesAda.Numerics.Generic_Elementary_Functions

YesAda.Real_Time

YesbAda.Sequential_IO

YesAda.Storage_IO

Restricted No_DispatchAda.Streams

Restricted No_DispatchAda.Streams.Stream_IO

YesAda.Strings

64

Appendix C. The Predefined Library

Supported?Unit Name

YesAda.Strings.Bounded

YesAda.Strings.Fixed

YesAda.Strings.Maps

YesAda.Strings.Maps.Constants

Not availableAda.Strings.Unbounded

Restricted No_Implicit_Heap_AllocationsAda.Strings.Wide_Bounded

Restricted No_Implicit_Heap_AllocationsAda.Strings.Wide_Fixed

Restricted No_Implicit_Heap_AllocationsAda.Strings.Wide_Maps

Restricted No_Implicit_Heap_AllocationsAda.Strings.Wide_Maps.Wide_Constants

Restricted No_Implicit_Heap_AllocationsAda.Strings.Wide_Unbounded

YesAda.Synchronous_Task_Control

Restricted No_DispatchAda.Tags

NoAda.Task_Attributes

YesAda.Task_Identification

YesbAda.Text_IO

Not applicableAda.Text_IO.Complex_IO

Not applicableAda.Text_IO.Editing

Not applicableAda.Text_IO.Text_Streams

YesAda.Unchecked_Conversion

Restricted No_Unchecked_DeallocationAda.Unchecked_Deallocation

Not applicableAda.Wide_Text_IO

Not applicableAda.Wide_Text_IO.Complex_IO

Not applicableAda.Wide_Text_IO.Editing

Not applicableAda.Wide_Text_IO.Text_Streams

YesabCalendar

YesbDirect_IO

YesIO_Exceptions

YesInterfaces

YesInterfaces.C

YesInterfaces.C.Pointers

YesInterfaces.C.Strings

Not applicableInterfaces.COBOL

65

Supported?Unit Name

Not applicableInterfaces.FORTRAN

YesMachine_Code

YesbSequential_IO

YesSystem

YesSystem.Address_to_Access_Conversions

YesSystem.Machine_Code

Not available (depends on Ada.Streams)System.RPC

YesSystem.Storage_Elements

Not available (depends on Ada.Finalization)System.Storage_Pools

YesText_IO

YesUnchecked_Conversion

Restricted No_Unchecked_DeallocationUnchecked_Deallocation

aRestricted to POSIX date range, which is Jan 1, 1970 to Jan 19, 2038
bWhen supported by appropriate system calls

66

Appendix C. The Predefined Library

