— —_— - =

Chris Nettleton, Xgc, www.xgc.com

Wilson Ifill, Colin Marsh, AWE plc, www.awe.co.uk
SIGAda 2007




P —————

Objectives

* To deliver an Ada compiler

e For applications offering unprecedented levels of
reliability and security

e That is
 Cost effective
- Efficient
 Reviewable (compiler is reviewable)
« Demonstrably correct



Background

* AWE is “is one of the largest high technology research,
design development and production facilities in the
country”

* AWE funded DeCCo work, to develop a Demonstrably-
Correct Compiler for subset Pascal

* XGC offers mission-critical Ada compilers
* XGC develops New Technology



s

"The DeCCo Work

* Logica’s formal methods team funded by AWE

* 7 spec of subset Pascal

e Z spec of target ASP

* 7 spec of transformations, Pascal -> ASP

* Formal mapping of Z transformations to Prolog DCTG
* PASP compiler in Prolog



P —————

XGC New Technology

* Internal feasibility study to fix all compiler problems

* To answer questions such as:
e How suitable?
e How fast?

e How reviewable?

* Demonstrator already written



s

Previous work

* When we first looked at this, in 1988, our computer
had 4MByte and ran at 1 MIPS

* It was a VAX 780

* We used Prolog (as in Poplog)
* Very slow using lots of memory
¢ Unsuitable for production use



 Present Work

* Work is part funded by AWE plc

* Feasibility study complete (April 2006)

* SIGAda paper

* We have a prototype Subset Ada compiler



P —————

" The Need for a New Compiler

* Today's compilers designed in 1980s
* Optimizing, and not reviewable

* Written in C, Ada, ...

* Compiler is > 1,000,000 lines

* Compilation process insecure



' Options

* Compiler has zillions of options
* Some options change the generated code
* Some options are dangerous

* Compiler is validated but not used with the options is
was validated with

* Compiler has environment variables that select
versions etc



s

Separate Compilation

* Disadvantages
e allows units to be compiled with different options

e allows a program to be linked with object code from
different compilers

e compiler ships with precompiled libraries and third-
party code

e compiler finds its source files using search lists



P—————

Generated Code

* Optimizations make generated code difficult to
understand

* Compiler performs dangerous optimizations that rely
on alias analysis

e Use of static link

* Saves and restores registers - therefore variables have >
one home

e Non-trivial transformations that are difficult to
demonstrate correct

* Register allocation with spilling



—

Generated Code

* Allows recursion across units, linkers don't check
this
* Compiler fails to flag or remove unreachable code

* Stack space allocated in unpredictable manner,
which requires Storage_Error checks

* Compiler generates unused subprograms
* Compiler generates unreachable code

* Obscure instruction sequences designed to reduce
time



" The Way Forward

* awell

* a well

* awell

-

-

efined

efined

-

HLL

| compiler

efined

| target computer

* Demonstration of correctness

* Proof of correctness (later)



" The Well-Defined HLL

* Unambiguous subset of Ada 95
e AWE will not use floating point

* SPARK

* Will need a formal definition (in Z)
e Maybe adapt Pascal spec



The Well-Defined Compiler

* Compiler has a unique identifier and is one
program
e No separate assembler or linker
e No intermediate files
* Has no options that effect the generated code
* Always compiles from given source to binary
program
e No implicit files
e No libraries
e No search paths



s

'The Well-Defined Target

+ COTS products preferred (MoD policy)
* AWE have specified the ASP in Z
* P offerings such as ARM, ZAP, but must be simple

* Pentium not an option (we have no spec) also much
too complex



s

Correctness

* We will demonstrate correctness
 a given Ada program has been correctly compiled
e all programs will be correctly compiled
e program synthesis?
* We would like to prove correctness
e theorem proof, with tool support



P —————

“New Technology

* Written in functional programming language
* No optimizations

* Compiler is one program

® ~ 5000 equations

* Many passes (> 20)

* Source can be supplied



s

' Code quality achieved by

* Variables allocated statically (no recursion)
* Algebraic simplification

* Commoning within Ada statements

* Constant folding

* Flow analysis

* Simple register allocation



“Static Analysis

* Compiler performs suftficient static analysis
* Lexical analysis
e Syntax analysis

e Semantic analysis (largest part of compiler by far)
» Identifies bad Ada
e IL control flow/data flow analysis

« Unreachable code
» Uninitialized variables (pragma Normalize!!!)



P —————

"No problems with ...

* Aliasing, kill sets on assignments
e Stacks, frames, stack overflow

* Saving registers across calls

* Up-level references

* Unreachable code

* Unused subprograms



s

Results

* Are optimizations important? (we use algebraic
simplifications)
e Code size, about the same
e Execution time, slightly slower

e Reviewability, much much better, with “direct
positional correspondence”



 Results

* compiler size
e About 6 M Byte
e compiler speed

e For small to medium programs (<= 30,000 lines) > 1000 lines
per second

* Demonstrations of correctness
e None as yet

* Proof
e None as yet



